Homotopy Type Theory:
Unified Foundations of Mathematics and Computation
(MURI Proposal)

TEAM MEMBERS:

Jeremy Avigad (Carnegie Mellon University)
Steve Awodey (PI, Carnegie Mellon University)
Robert Harper (Carnegie Mellon University)
Daniel Licata (Wesleyan University)
Michael Shulman (University of San Diego)
Vladimir Voevodsky (Institute for Advanced Study)

COLLABORATORS:

Andrej Bauer (Ljubljana U., Slovenia)
Thierry Coquand (Gothenburg U., Sweden)
Nicola Gambino (Leeds U., UK)
David Spivak (MIT)

April 29, 2014

Homotopy Type Theory 1

Introduction

The aim of this proposal is to enable a tightly knit group of expert researchers in logic, math-
ematics, and computer science to pursue a recent theoretical breakthrough that is reshaping the
foundations of those disciplines. Homotopy type theory opens up a fundamentally new direction
in the foundations of mathematics, computation, and information with new, higher-dimensional
data types not previously available in set theory and extensional type theory. Its applications range
from allowing mathematicians to work with the “right” notion of equality for mathematical struc-
tures, to directly expressing higher mathematical concepts such as n-categories and homotopy
types, to offering powerful and flexible new generic programming techniques that facilitate the
development of certified software. At the conceptual center of these developments is the new
homotopy-theoretic semantics for constructive type theories. The computational proof assistants
being developed on this basis will facilitate the large-scale formalization of logic and mathematics,
with far-reaching practical implications for mathematics and information science.

The feasibility of this new approach has been demonstrated during a special year at the Institute
for Advanced Study (Princeton) in 2012-13 by a group of leading researchers from logic, computer
science, homotopy theory, and category theory selected from around the world. Several of the core
members of this group are assembled here into a MURI team, and are now uniquely positioned
to advance this research program, solving critical open problems and addressing specific issues
identified during the IAS year in a proven, effective collaboration. These include developing algo-
rithms to support the new foundations, furthering its applications to pure and applied mathematics
and computation, and enhancing existing proof assistants or developing new ones to implement
the new foundations, leading to the future wide-spread use of computational proof assistants. The
resulting large-scale formalization of logic and mathematics will enable the creation of powerful
scientific tools with impact on challenging problems of DoD interest.

Constructive Type Theory and Proof Assistants

As mathematics has become increasingly specialized and technical, new discoveries have become
increasingly difficult to evaluate, and proofs have become increasingly large artifacts which may
require years of work by experts to verify. The development of mathematical proofs now requires
confronting many of the same challenges as the development of large software systems, such as
managing complicated interdependencies between components, integrating work by various au-
thors, and working effectively with an artifact that is too big to understand all at once. Moreover,
mathematical proofs increasingly are large software systems, as proofs of theorems such as the
four-color theorem and the Kepler conjecture include computer calculations that are too long to
check by hand, and evaluating mathematical results requires verifying the correctness of code.
One way to manage this complexity is to use a computer program called a proof assistant to
develop proofs and software and verify their correctness. The proof assistant translates a mathe-
matical argument to certain trusted foundational axioms, which ensures that it follows the “rules
of mathematics.” The assistant also provides interactive development tools, and procedures for au-
tomatically discovering proofs. These tools allow a community of mathematicians to build shared,
searchable libraries of formalized definitions, theorems, and proofs, facilitating the large-scale for-
malization of mathematics. There is a substantial and growing body of formalized mathematics
using proof assistants—including elementary number theory, multivariate real analysis, complex
analysis, measure theory and measure-theoretic probability, abstract algebra, Galois theory, lin-

Homotopy Type Theory 2

ear algebra, finite group theory, and representation theory, and more— in systems including Agda
[Nor07], Coq [BCO04], Isabelle [NPWO02], HOL [GM93], HOL light [Har96], and Mizar [GKN10].
The same tools can be used to verify computer programs. Thomas Hales, a leading researcher
currently directing a large-scale project to verify his celebrated proof of the Kepler conjecture,
has recently argued persuasively that formal verification of code is essential to national security
[Hal13]: “Formal verification of computer code can be advised when human life or large economic
interests are at stake: aircraft control systems, widely adopted cryptographic standards, or nuclear
reactor controllers. Formal verification reduces the software defect rate to a level that is scarcely
attainable by other means.”

However, the effort required to prove a theorem or write a program using these tools is gener-
ally at least an order of magnitude higher than using informal methods, which is not tenable for
developments that already take years. While there are certainly improvements to be made in user
interfaces, automated theorem proving, and other aspects, one potential avenue for radically im-
proving the practicality of proof assistants is to revisit the very foundations on which they are built.
The current commonly-accepted foundation of mathematics, Zermelo-Fraenkel set theory with the
Axiom of Choice (ZFC), is a particular theory in first-order logic that was established in the first
quarter of the 20" century and has remained essentially unchanged since then. However, ZFC is,
in certain ways, ill-suited for use in proof assistants: the gap between a high-level argument and
its encoding in ZFC is large, and it is difficult to describe the computational aspects of proofs and
programs in it. This motivates considering alternate foundations of mathematics.

A leading alternative to set theory is constructive type theory [ML98, ML75, ML84], whose
basic objects are structured data types consisting of lists, trees, functions, etc. Type theory is
constructive in three senses. First, it provides axiomatic freedom, in that it does not in general
affirm certain classical principles, such as the law of the excluded middle (“For every proposition
A, either A is true or it is false”) and the axiom of choice. To see why the absence of a principle
can be a strength, it is useful to consider an analogy to geometry, as in Euclid’s Elements. Euclid’s
geometry is synthetic, in that it consists of a formal system of rules for describing and reasoning
about primitive notions of points, lines, angles, and circles. Euclidean geometry has a model in the
cartesian plane R>—every statement of Euclidean geometry can be translated to a true statement
about the plane—so one way to prove a theorem about geometry in R? is to deduce it from Euclid’s
axioms, which by the model implies that it holds in the plane. However, if we omit the parallel
axiom, Euclidean geometry also has models in the hyperbolic plane or on the surface of a sphere
(describing sailing on the surface of the earth), so a proof that does not use the parallel axiom
actually proves a theorem in many different settings. Moreover, we can replace the parallel axiom
with extensions specific to hyperbolic or spherical geometry, to better describe these subjects.

Similarly, because type theory does not insist on certain classical principles (such as the law of
the excluded middle), it can be used—Iike geometry without the parallel axiom—to synthetically
describe models where these principles fail, and it can be extended to better describe these alter-
nate contexts. For example, the function type A — B can be modeled not only by the set-theoretic
functions from A to B, but also as continuous functions on topological spaces [Sco72]. This al-
lows continuous functions to be described exactly as simply as set-theoretic functions, without ever
mentioning topology or continuity. Internally to the system, the idea of continuity is implicit in
the sense that all functions are continuous; it becomes explicit in the model. A synthetic proof is
divided into reasoning in the formal system, which is specific to the theorem in question, and the
model construction, which is reused across all theorems. (This is similar to the division of a soft-

Homotopy Type Theory 3

ware project into general-purpose libraries and application-specific code, which is well-known to
improve code reuse and modularity.) Consequently, synthetic proofs can be cleaner, more elegant,
more reusable, and much easier to formalize in proof assistants.

A second aspect of constructivity is that type theory has a computational interpretation as a pro-
gramming language, where functions are interpreted as computable functions from their domain
to their range. Crucially, type theory provides a true higher-order notion of computability, where
computable functions are treated as extensional mathematical entities—two functions that behave
the same on all arguments are indistinguishable—which is not true of encodings as Turing ma-
chines in ZFC. Strikingly, the absence of excluded middle and related principles is key not only to
synthetic mathematics but also to computation: as a computable function, the law of the excluded
middle would require that every computational problem can be solved. Because of this compu-
tational interpretation, type theory is the basis of many modern programming languages. Some
of these languages provide sophisticated mechanisms for software verification, where important
functional, safety, or security properties of code are checked by the proof assistants. Computation
also facilitates automated theorem proving, because the prover can run programs.

A third aspect of constructivity is that type theory unifies the notions of “proposition” and
“set” by the propositions-as-types principle, according to which proofs are first-class mathematical
constructions, on the same footing as numbers or groups or mappings. This enables a proof-
relevant conception of mathematics, where proofs are themselves objects of study. For example,
type theory includes an equality type x =4 y, whose elements are proofs that x equals y in the
type A. In some ways, this type is similar to equality in set theory. For example, it satisfies a
version of Leibniz’s indiscernability of identicals: given evidence p for an equality x =y, there is a
function transport (p) : C(x) — C(y) that transports any property or structure C along an equality.
However, in other ways, it is unfamiliar. For example, transport. (p) is a function, which opens
up the possibility that it may do real work. Moreover, proofs of equality can themselves be the
subjects of equalities: there is a type p =(,—,,) ¢ of equalities between two proofs of equality p
and ¢, and a type r =(,—,) s where r and s equate p and ¢, and so on. The meaning of these
equations between proofs of equations was, until recently, quite mysterious; but it turns out to be
the key to a radical expansion of the kind of mathematics that can be described synthetically in
type theory. This new interpretation is called homotopy type theory.

Homotopy Type Theory and Univalent Foundations

The idea of homotopy type theory was discovered independently in about 2006 by Awodey and his
student Michael Warren [AW09] and Voevodsky [Voe06], who later proposed the Univalent Foun-
dations program on this basis [Voel0]. Their startling observation is that the equality type can in
fact be used to describe the structure of paths in a space, as studied in homotopy theory, the branch
of mathematics devoted to the study of continuous deformations. Proofs of x =4 y can be thought
of as paths from the point x to the point y in the space A. Proofs of p =(,_,,) g can be thought of
as “paths between paths” or homotopies, and so on. This interpretation imbues the higher equal-
ity types with significant mathematical and computational content, and allows types to be used
to synthetically describe spaces. It leads to a new foundation of mathematics and computation,
where types/spaces replace sets as the basic mathematical objects. This new foundation is being
developed via a fruitful symbiotic relationship between type theory and homotopy theory, where
homotopy theory suggests improvements to type theory, and type theory, with these improvements,
can be used to develop mathematics and software in new ways. Moreover, since certain types that

Homotopy Type Theory 4

are “homotopy sets”” behave like conventional sets, there is no loss in expressiveness.

One such improvement is Voevodsky’s univalence axiom, which states that for a universe type
“” whose elements X,Y are other types (as often used for generic programming), the identity
type X =¢ Y is equivalent to the type Equiv(X,Y) of equivalences between the types X and Y.
This allows type theory to describe the “classifying spaces” of homotopy theory, but also formally
justifies the identification of isomorphic structures: it yields a function

ua: Equiv(X,Y) —» (X =¢Y)

which transforms an isomorphism of groups (say) into an equality of groups. This should be re-
garded not as a collapse of isomorphism to equality, but an expansion of the meaning of “equal” to
include isomorphism, exploiting proof-relevance. Computationally, this builds in invariance under
data representation: since equivalent types are equal, all structures and algorithms can be automati-
cally transported across any equivalence. Univalence is unavailable in set theory, where “perverse”
statements can distinguish between isomorphic structures, and in extensional type theory, where
equalities have no computational content; but it is compatible with intensional type theory, and so
can enhance proof assistants such as Coq and Agda.

A second improvement is higher inductive types: data types whose constructors include not
only elements, but equalities between elements (or certain other equalities). These were introduced
to describe the basic constructions of homotopy theory with a “logic of homotopy types.” For
instance, the circle S' is generated by one element b : S! and one equality loop : b =g! b, modeling
a space generated by one point and one non-trivial loop. Thus we can define a function f : S! — A
by pattern-matching on these constructors by specifying f(b) : A and f(loop) : f(b) =4 f(b). Such
types support formal proofs of classical results in homotopy theory, such as calculating homotopy
groups of spheres. If higher inductive types can be shown to be constructive, these proofs would
become new algorithms. Computationally, higher inductive types would allow a programmer to
specify when two structures should be considered representations of the same underlying object—
by adding an equality constructor to a data type—in a way that is automatically respected by all
operations. This subsumes quotient types, which have been problematic in intensional type theory,
and has applications to modeling domain-specific specification logics and version control systems.

The resulting conception of homotopy type theory is a foundational system of type theory with
an intrinsic homotopical character, augmented by new principles of reasoning that strengthen this
interpretation, and with an accompanying implementation in a proof assistant. This new approach
could remake foundations into a practical tool for the working mathematician. The “geometric”
intuition underlying the univalent approach makes it well-suited both to human mathematical prac-
tice and to computer formalization. It provides promising new methods for formalization, reducing
the gap between formal and informal proofs, and enabling synthetic approaches to disciplines that
would otherwise be quite difficult to formalize. Moreover, if the computational interpretation of
type theory can be extended to homotopy type theory, the resulting system will provide the first
account of higher-order computable functions on higher-dimensional spaces and categories, with
promising applications to verified mathematical computations and to software verification. As this
new foundation becomes better understood and better implemented, it has the potential to revolu-
tionize our understanding of the relation between mathematics and computation, and to underlie
the development of powerful, practical tools for the working scientist in fields farther removed from
pure mathematics such as hardware and software verification, cyber-security, artificial intelligence,
robotics, and human-computer interaction.

Homotopy Type Theory 5

This MURI project continues the ground-breaking work done in 2012—13, when the Institute
for Advanced Study (IAS) School of Mathematics hosted a special year devoted to the topic Uni-
valent Foundations of Mathematics, organized by Steve Awodey, Thierry Coquand, and Vladimir
Voevodsky. This work conclusively demonstrated the viability of this new foundation and its prac-
tical advantages. For the special year, a team of 32 leading researchers in the areas of computer
science, logic, and mathematics from around the world was assembled at the IAS to develop this
new foundation of mathematics. The goals of the IAS program, which included modifying existing
proof assistants to support homotopy type theory, a computational interpretation of univalence and
higher inductive types, formalizing new areas of mathematics in proof assistants, and relating ho-
motopy type theory to conventional foundations, were realized beyond expectations. In addition to
a body of theoretical results pertaining to the foundations, a substantial amount of mathematics was
developed in this new system, including basic results in homotopy theory, higher category theory,
set theory, and the beginnings of real analysis. In parallel, efforts were focused on the development
of new and existing computer proof assistants for the formalization of these and future results. Two
working prototype proof assistants based on modifications of the existing systems Coq and Agda
were implemented, and several independent but related libraries of code were established on which
future work can be built. Moreover, formalized proofs of significant results in homotopy theory
were given, such as computing many homotopy groups of spheres. In a remarkable collaborative
effort, a textbook was also written, developing both the foundations and various specialized areas
of mathematics in the new logical system. This book not only serves as a record of the results of
the special year, but also as a useful introduction for researchers entering the field (see [Pro13]).

Overview of Proposed Work

The main goal of this project is to further develop a new foundation of mathematics and com-
putation based on type theory with improvements suggested by homotopy theory, and to apply
the resulting insights to develop new mathematical results, libraries of formalized mathematical
proofs, verified software systems, improvements to existing proof assistants, and/or experimental
prototypes of new proof assistants.

The MURI team assembled here to accomplish this goal includes the organizers of the IAS
special year, who are also the founders of this research program, together with other highly suc-
cessful participants. In addition, a number of “unfunded collaborators” are included in the team
concept; these are individuals who have made vital contributions at IAS and formed especially ef-
fective collaborations with the research group. Based on the open problems arising in these recent
investigations, the following research topics, to be pursued in the proposed work, are judged to be
the most promising directions toward likely solutions and significant advances. The exposition is
divided into four thematic sections, corresponding to the four main areas of work at present.

Foundations (Section 1.1) We propose to develop mathematics using the new principles of uni-
valent foundations, and to further extend type theory to better support these developments. For
example, it is necessary to investigate the theory of higher inductive types, which will form the
basis for a native implementation in proof assistants (a partial implementation in Coq is already in
progress). Another topic is to investigate a new class of type-theoretic languages combining homo-
topical equalities (paths) and strict equalities in one system, enabling proof assistants to fruitfully
distinguish directed computational behavior from more flexible mathematical identities.

Homotopy Type Theory 6

Formalization (Section 1.2) Formalization of mathematics using homotopy type theory has al-
ready been a striking success using existing proof assistants. For example, synthetic homotopy
theory permits much more abstract and yet elementary and concise proofs. We propose to build
on these initial successes and develop software libraries of mathematical results, demonstrating
the advantages of homotopy type theory. Areas of mathematics under investigation include homo-
topy theory and category theory, but also analysis (higher inductive types support a new powerful
constructive definition of the real numbers) and even set theory. We also propose to formalize the
mathematics that justifies homotopy type theory itself, including its syntax and semantics.

Computation (Section 1.3) It is an open problem whether there is a computational interpreta-
tion of homotopy type theory, though partial results for truncated theories and work on constructive
simplicial and cubical models suggest that there should be one. A solution to this problem would
advance applications to programming, verification, and proof automation, and could even provide
insights into difficult problems in algebraic topology. We propose to investigate this problem, to
implement prototype implementations of algorithms that are developed, and to develop program-
ming and software verification applications that will be possible if this work succeeds.

Semantics (Section 1.4) Models of homotopy type theory relate the new foundations to existing
ones, justify synthetic approaches to mathematics, and answer questions about the consistency and
constructivity of the theory. Models of type theory with enhancements such as higher inductive
types and univalence can be constructed using the spaces of classical homotopy theory. Impor-
tantly, however, there are also “nonstandard” models in which the spaces are enhanced in some
way, such as with differentiable structure or infinitesimal thickenings. We propose to investigate
models of homotopy type theory, and to apply these models to synthetically incorporate many
other kinds of mathematics. A notable example is synthetic differential geometry and differential
cohomology, which can provide a formal context for quantum gauge field theory. We also propose
to investigate how to embed classical arguments in the richer language of constructive type the-
ory. These models and embeddings may allow proof assistants based on homotopy type theory to
interact with other systems, and take advantage of existing libraries and tools.

1 Technical Approach

1.1 Foundations

In this section we discuss two strands of proposed work: on developing mathematics using the new
features of homotopy type theory, and on extensions to type theory to support these developments.
While homotopy type theory is, in general, a constructive theory of types or spaces, it includes
familiar set-based and non-constructive mathematics as a special case. A proposition is a type with
the property that any two elements are equal. Set-based mathematics takes place in a restricted
fragment of types called sets, whose types of paths are propositions. Propositions and sets are just
the first rungs in an infinite hierarchy of n-types, which are types whose n-paths are sets. While the
law of the excluded middle for arbitrary spaces is not compatible with univalence, it is consistent
to assume the law of the excluded middle for propositions, so non-constructive mathematics can
be carried out. Thus, one can always develop mathematics by using traditional definitions and
methods. Even for such conventional set-based developments, univalence offers some new ideas,
such as the principle that bijective sets and isomorphic structures are connected by an equality.
However, sometimes there is a better way to express a piece of mathematics, taking advantage

Homotopy Type Theory 7

of the new features of homotopy type theory. Some areas of set-based mathematics clearly fit into
a corresponding area of the mathematics of spaces; for example, the theory of finite groups is nat-
urally a part of the theory of homotopy finite groups, related to notions of homotopy lie groups and
p-compact groups. Some areas of mathematics, such as category theory, require substantial change
for proper univalent presentation; for example, it is better to define a 1-category with not a set but a
fully higher-dimensional type of objects, and then investigate when the paths in the type of objects
correspond to the isomorphisms in the category. Some areas can be expressed synthetically, such
as homotopy theory itself, which can be studied not by starting from a combinatorial or topological
model, but by using the intrinsic homotopy structure of types. Some areas of mathematics can be
expressed synthetically if we make additional extensions to type theory; for example, types can be
given an intrinsic topological or smooth structure, which allows aspects of differential geometry
to expressed synthetically and has applications to mathematical physics. Finally, there are areas,
such as analysis, where substantial modifications to conventional developments may be desirable,
but we do not yet know how the new development should go.

The book Homotopy Type Theory: Univalent Foundations of Mathematics [Prol3], written
during the IAS special year primarily by the members of this MURI team, presents a first foray
into developing various areas of mathematics in the new foundations. Since its release in late
June 2013, some 683 copies of the book have been sold (a striking number, for an advanced
mathematical monograph, especially since it is available free online), and 18,730 copies have
been downloaded. The book describes both the basic definitions of the new foundations, and some
preliminary applications to homotopy theory, category theory, set theory, and analysis.

A major component of this project will be the continued development of various areas of math-
ematics in the new foundations. This will create new targets for formalizations and motivate pos-
sible further improvements to type theory. A related thrust is the further development of the type
theoretic foundations themselves. We next discuss the new features of homotopy type theory that
we now employ or plan to investigate and how they improve the development of mathematics.

Univalence The univalence axiom states that the type A =¢; B of proofs of equality between
A and B is equivalent to the type Equiv(A,B) of equivalences between A and B. Equivalence is
a generalization of the notion of bijection or isomorphism to higher-dimensional structures, so
the special case of univalence for sets implies that bijective sets are equal, in the sense that a
bijection b : A = B induces a proof ua(b) of A = B. Therefore, any property or structure can be
transported along a bijection: given property or structure C : U — U, the rules for the equality
type stipulate that there is a function transportc (ua(b)) : C(A) — C(B), which transforms A’s
into B’s in context C. Moreover, transport. (ua(b)) is itself an equivalence, with inverse given
by transport. (ua(b~!)). An example application of this principle is as follows: An algebraic
structure such as a group can be represented by a type family GroupStructure : U — U, where the
type GroupStructure(A) includes the identity (ident : A), inverse (inv : A — A), and multiplication
operations of the group (® : (A x A) — A) as well as proofs of the associativity, unit, and inverse
laws; (e.g. assoc: IIx,y,7: Ax® (y®2z) = (x®y) ©z). Now it is common for a single mathematical
concept to be representable as a set in multiple ways, which are all in bijection with each other. In
informal math, one might omit the “obvious” proof that a group structure can be transported along
a bijection. In homotopy type theory, the proof is indeed obvious, because it is a single application
of univalence: Given a bijection b : A = B, the function transportg,oupstructure (Ua(b)) induces a
bijection between GroupStructure(A) and GroupStructure(B).

Homotopy Type Theory 8

Moreover, one can define the notion of a homomorphism between two groups (a map between
them that preserves the group operations) and then the notion of isomorphism (homomorphisms
back and forth that compose to the identity). Theorems in algebra are typically invariant under
group isomorphism, in the sense that if a theorem holds for one group, then it also holds for any
other group that is isomorphic to it. Consequently, it is common to adopt informal “abuses of
notation” where isomorphic groups are identified. However, with univalence, an isomorphism i
between groups G and H can indeed be used to construct an element of the equality type G = H.
Thus, in univalent foundations, these informal abuses of notation become actual mathematical
reasoning principles, and indeed further mathematical structures for investigation.

The idea that univalence allows one to define a mathematical concept with the “right” notion of
equality extends to higher-dimensional objects, such as categories. Usually a category consists of
a set of objects and, for any two objects, a set of morphisms. In homotopy type theory, we instead
define a pre-category to have a (possibly higher-dimensional) type of objects (but still a set of
morphisms), and then say that a category is a pre-category in which the paths in the type of objects
correspond to the isomorphisms—a relativized version of the univalence axiom. This yields a new
notion of “Rezk completion” [AKS13], which is a universal way to replace a pre-category with a
category. Categories of this sort enjoy several useful properties that pre-categories, or categories
constructed in set-based foundations, do not. For example, in category theory, it is often necessary
to use a coarse notion of equality, such as equivalence (rather than isomorphism) of categories. For
pre-categories, equality corresponds to isomorphism, but for categories, equality corresponds to
equivalence. Thus, univalent foundations provides the “right” notion of equality for these higher
structures, in the sense that an equivalence between categories C and D induces an element of the
equality type C = D. Moreover, when used synthetically to describe nonstandard semantic models
(see §1.4), such categories correspond to stacks of ordinary categories, which are well-known to
be the “correct” notion of internal category in such settings in algebraic topology and geometry.

Proposed work on univalence includes investigating how univalence simplifies the develop-
ment, and formalization (see §1.2), of other areas of mathematics. Proposed work also includes
investigating its constructivity (§1.3) and semantics (§1.4), which are discussed below.

Higher inductive types Higher inductive types are a new way to introduce types, by giving
generators not only for elements of the type, but also for equalities or paths. Higher inductive
types have applications in many areas of mathematics, including category theory and analysis,
but the most paradigmatic is synthetic homotopy theory: we can study the homotopy theory of
types, representing paths by the equality type, and using higher inductive types to construct basic
spaces. These synthetic theorems can be interpreted in topological or combinatorial models (such
as simplicial sets), and in other contexts as well. During the IAS special year, the members of this
MURI team and collaborators developed a number of basic results in homotopy theory, including
calculations of some homotopy groups of spheres, such as 7, (5"), 7 (S") for k < n, n3(S?) and
74(S?); a calculation of the total space of the Hopf fibration; proofs of the Freudenthal suspen-
sion theorem, the Blakers-Massey theorem, and the Seifert-van Kampen theorem; a construction
of Eilenberg-Mac Lane spaces; and an investigation of the theory of covering spaces; proofs of
the Eilenberg-Steenrod axioms for cohomology; and a construction of spectral sequences. These
proofs are not simple rephrasings of traditional proofs; instead, they combine key ideas from tra-
ditional proofs with new mechanisms that are emphasized in type theory. This leads to clean and
elegant proofs, which, as we discuss further in §1.2, are very amenable to formalization in proof

Homotopy Type Theory 9

assistants. Moreover, if univalence and higher inductive types can be given a computational inter-
pretation (see §1.3), then these new proofs will be constructive. This may potentially lead to new
results, because many of the theorems in this area of mathematics involve calculations of groups or
maps, and using constructive methods creates possibilities for using a computer to do these calcu-
lations. For example, the calculation of n4(S3) in homotopy type theory is a proof that there exists
a number & such that 14 (53) = Zy. Given constructivity, this proof could be executed, in order to
automatically calculate k (which should be 2).

While specific higher inductive types have been formulated precisely, proposed work on higher
inductive types includes developing a general schema that would allow formal study of a useful
class of higher inductive types. This is necessary for studying their computational behavior (§1.3)
and semantics (§1.4). Solutions to these problems may eventually enable a native implementation
in proof assistants; a partial implementation in standard Coq is already in progress.

Exact equality and other approaches to ‘“infinite objects” Above, we described a univalent
approach to 1-categories. Extending this approach to higher dimensions is a major open problem,
which may motivate some extensions of homotopy type theory. There are currently many equiva-
lent notions of “higher-dimensional category”; it remains to be seen which are most amenable for
use in homotopy type theory. However, all of them require as underlying data an infinite system
of sets or types with maps between them. If we formalize this directly in homotopy type theory as
a diagram of “sets” (types whose path-spaces are propositions), then there is no problem; but this
approach would not support an analogous notion of “relative univalence”, and hence in particular
would not represent the correct “higher stacks” in co-topos models. If instead we use a system
of general types, then the corresponding diagram must be required to commute up to “all higher
homotopies”. Making this precise is a difficult problem of higher category theory, which is what
we are trying to define; thus there is a “chicken and egg” problem.

One approach to solving this is to make use of type dependency, so that rather than a diagram
of unrelated types and maps between them, we have a sequence of types, each dependent on the
previous ones. In this case, the required commutativities hold by definition, hence automatically
coherently. While it is possible to define some higher-dimensional structures in this way, such as
“globular types”, the more important ones for higher category theory, such as (semi-) simplicial
types, involve combinatorial complexity that no one has yet succeeded in encoding with dependent
types working purely inside the type theory (see [Her13] for a recent attempt). It may be that only
an extra dose of ingenuity is required; but even if so, the difficulties involved in merely making the
definition suggest that such structures might be difficult to use in practice.

This motivates the exploration of variations in the underlying type theory that are better adapted
for the purpose. One possibility is a type theory with two kinds of equality: one a homotopical
“path type” as discussed above, and the other a stricter “exact equality”. While transporting a
structure or property along a path can have significant content, transporting along an exact equality
would be “silent,” like a traditional notion of equality in set theory or extensional type theory.
Having an exact equality type would require some distinction between types that are “fibrant,” in
the sense that they respect paths, because the exact equality type itself does not respect paths.

There are other possible solutions to this problem. One is to strengthen the ties between the
type theory and the metatheory, so that type dependency structures can be defined by induction in
syntax and then instantiated internally. A second is to augment the type theory by a basic notion
of “diagram of types”, whose behavior is specified by rules generalizing those for single types.

Homotopy Type Theory 10

Finally, a third possibility is to sidestep the matter by working “synthetically” in the internal logic
(see §1.4) of an oco-topos of diagrams of the appropriate shape. Yet other possibilities probably
remain to be thought of. Proposed work includes exploring the design space of type theories, with
the need to represent “infinite objects” as a guiding desideratum.

Modalities As discussed in §1.4, homotopy type theory has semantics not only in classical al-
gebraic topology, but in other co-toposes; thus all the mathematics mentioned previously can be
interpreted in these models. However, just as classical mathematics validates special principles not
satisfied in all models (such as the law of excluded middle and the axiom of choice), particular
stack models have their own special behavior. By adding corresponding rules to homotopy type
theory, we can perform different kinds of synthetic mathematics that will apply to suitable models.

Often the additional rules are higher modalities. These are analogous to the modalities DA
(“necessarily A”) and A (“possibly A”) of classical modal logic; however, they apply not only to
propositions, but to sets and higher-dimensional types. The most basic modalities, which always
exist, are the n-truncations ||A||,, which discard all information above dimension n. In particu-
lar, the (—1)-truncation is a “squash” [Con83, Con85] or “bracket” type [AB04], which discards
existential witnesses, forcing any two inhabitants of ||A||_; to be equal. As for other modali-
ties, the most extensively studied example (see [SS12]) is cohesive homotopy type theory, which
corresponds to models incorporating topological or smooth structure. Its new higher modalities
are p (which makes the cohesion discrete), #f (which makes it codiscrete), and [(the “shape” or
“fundamental co-groupoid”); they are related by an adjoint string [<} — §. This enables a simple
description of concepts in differential cohomology. For instance, if F is any type, let BAut(F)
denote the subtype of the universe U consisting of all types isomorphic to F'; it may be defined as
Ya.1/|A = F||—1. The univalence axiom implies that BAut(F) is a classifying space for bundles
with fiber F; but cohesively we also have the type ph BAut(F '), which is a classifying space for such
bundles equipped with a flat connection. These are the basic ingredient of higher quantum gauge
field theory, the basic framework of modern physics. Thus, cohesive homotopy type theory is a
natural framework for the formal analysis of such theories [SS12].

Proposed work includes formalizing this “synthetic cohesive mathematics”, and investigating
applications of modalities to language-based security (see §1.3). The co-toposes of diagrams men-
tioned above are also cohesive, so higher category theory may also involve higher modalities.

Resizing Rules To avoid paradox, types are stratified by size into various universes. We plan to
investigate resizing rules that improve the flexibility of this stratification. For example, classical
mathematics is impredicative: a proposition can be determined by quantification over all propo-
sitions, including itself. This principle can consistently be added to type theory by a rule that
a homotopy proposition in any universe is in (or is equivalent to a proposition in) the smallest
universe. Similar such resizing rules would allow for a systematic construction of truncations,
quotients, and other higher inductive types with good computational behavior.

1.2 Formalization of mathematics

Next, we describe proposed work on formalizing mathematics using proof assistants. This work
will develop a valuable library of formalized mathematics, and investigate the extent to which
the new foundations improve the process of doing so. Preliminary results have been promising.
For example, univalence provides an improved treatment of isomorphism and equivalence—while
current proof assistants do not understand a statement like “by abuse of notation, we identify

Homotopy Type Theory 11

isomorphic groups”, in univalent foundations, isomorphism between groups yields an element of
the equality type. Synthetic homotopy theory has also provided very promising initial results.

Existing formalizations One central task will be to extend the library of theorems that have
been derived and formally verified in this framework. There are currently three such libraries:
one developed by Voevodsky in the Coq proof assistant; a second library, developed by Bauer,
Lumsdaine, Shulman, and others, in Coq; and a third library developed by Licata, Brunerie, Hou,
and others in the Agda proof assistant. Since homotopy type theory is still in an exploratory
developmental phase, these parallel developments are highly desirable, in that they make it possible
to experiment with different styles of formalization and different ways of incorporating automation.

All three libraries include basic homotopy-theoretic constructions and their properties, includ-
ing operations on paths, transport along paths, properties of dependent products and sums, con-
tractible spaces, fibrations, equivalences and their properties, as well as proofs of the surprising
fact, discovered by Voevodsky, that the univalence axiom implies function extensionality. The
work [AKS13] on category theory in univalent foundations described in Section 1.1 was devel-
oped formally in Voevodsky’s library. Another library of facts about limits of diagrams over
graphs [AKL13] has been developed based on the second Coq library. Most of the formaliza-
tions in synthetic homotopy theory mentioned above were developed in the Agda library; see
e.g. [LS13, Prol3]. These include calculations of some homotopy groups of spheres, such as
7, (S") and m(S") for k < n; proofs of the Freudenthal suspension theorem, the Blakers-Massey
theorem, and the Seifert-van Kampen theorem; a construction of Eilenberg-Mac Lane spaces; and
an investigation of the theory of covering spaces.

We have found that in many cases, the informal and formal development of the mathematics go
hand in hand, in the sense that the proof assistant proved to be an extremely valuable tool in guiding
the exploration and checking the results. Moreover, especially when doing the “synthetic” sort of
mathematics that homotopy type theory is well-adapted to, the formal and informal proofs tend to
be much more similar, both in content and length, than is usual for fully formalized mathematics.

Proposed formalizations We plan to develop formalized libraries in several areas of mathemat-
ics, exploring the extent to which the new foundations described above facilitates the formalization
of logic, set theory, algebra, arithmetic and number theory, real and complex analysis, analytic and
algebraic geometry, homotopy theory, category theory, and other topics. A starting point is the
results in homotopy theory, set theory, and analysis in the Homotopy Type Theory book [Pro13]
which have not been formalized in a proof assistant. A formalization of real analysis following
the book would improve on existing techniques that use setoids—and given a computational inter-
pretation of homotopy type theory, would be a verified implementation of arbitrary-precision real
arithmetic. In homotopy theory, results waiting to be formalized include a calculation of the total
space of the Hopf fibration, calculations of 73(S?) and 7t4(S?), proofs of the Eilenberg-Steenrod
axioms for cohomology, and a construction of spectral sequences. Some of these formalizations
may motivate changes to the libraries or proof assistants; for example, attempts to formalize the
calculation of the total space of the Hopf fibration have gotten stuck on large calculations with
paths, so this task is a good test for work on a computational interpretation. There are also many
homotopy theoretic theorems which have not yet been proved synthetically, but are simple to state,
and thus potential targets for formalization. Given a computational interpretation, these formal-
izations could be used to automatically compute invariants of such homotopy-theoretic structures,
a notoriously difficult task in algebraic topology. An example mentioned in §1.1 is automatically

Homotopy Type Theory 12

computing the k such that 74 ($%) = Z;.

Another topic for formalization is the mathematics that underlies homotopy type theory itself.
Models of homotopy type theory (§1.4) show its consistency relative to classical mathematics and
justify new rules for synthetic mathematics. For instance, the univalence axiom was originally
motivated by its truth in the “standard” model of Kan simplicial sets. As other new features are
added to type theory, it is important to extend the existing models to encompass them. The basic
idea used to construct models of type theory is to describe an algebraic structure, known as a
“contextual category” or “C-system”, and show that the formal syntax of a particular type theory
is a presentation of the initial C-system with additional operations corresponding to the rules of
that theory. Given this, in order to obtain a model in (say) Kan simplicial sets, it suffices to
construct a C-system out of them: The interpretation of types and terms in the model is then
supplied by the unique map of C-systems from the syntactic one into the semantic one. There are
many technical details involved in such an argument, both in formulating the syntax of type theory
and in constructing the relevant model structures, and in very few cases have they been written out
carefully in the literature. For the Calculus of Constructions (the core type theory underlying Coq),
it was shown by [Str91]. Since semantics is so important both for consistency and for applications,
we propose to formalize the model construction itself in a proof assistant. This formalization can
then support the iterative development of new features and applications for homotopy type theory,
by formally verifying their semantic consistency as they are introduced.

Proposed work on proof automation Despite the advances in interactive theorem proving in
recent years, spelling out every last detail of a formal argument can be tedious and difficult, even
in a framework as powerful as homotopy type theory. One thing that makes formalization more
palatable is when the computer can automatically fill in straightforward parts of an argument. The
use of formal methods is even more advantageous when the computer can help find nontrivial
proofs and constructions. As a result, an important goal is to develop better automated support.

In one of the Coq libraries, a modicum of automation is already used to simplify expressions
and construct paths, using Coq’s internal “tactic” language. But although this language is easy to
use, it is slow and not very expressive. When it comes to conventional classical reasoning, a wide
array of reasoning tools have been integrated with interactive theorem provers, whereas no such
tools are currently available for homotopy type theory. Part of the problem is that the language is
so expressive; because the framework can encode so much, it is hard to find fully general ways
of coping with all the sorts of search and decision problems that may arise. But this only means
that additional thought and care is required to isolate fragments and areas where additional context
makes it possible to design efficient and effective reasoning procedures.

Proposed work on verified mathematical computation Because of the work on a computa-
tional interpretation (see §1.3), homotopy type theory may offer new possibilities for verified
mathematical computation. Both the Appel-Haken proof of the four color theorem and Hales’
proof of the Kepler conjecture were controversial because they relied on computations that are
too long to check by hand. The ability to verify these computations is one of the most important
advances in Gonthier’s verification of the four-color theorem and Hales’ work on the Flyspeck
project [HHM™10]. At present, however, the mathematical community has not developed gen-
eral means of verifying symbolic computations. Some progress has been made; for example, the
Kenzo system can be used to calculate homology groups and other algebraic invariants of topo-
logical constructions [HPRS11, RR13, RER(09], and some of the relevant algorithms, but by no

Homotopy Type Theory 13

means the whole system, have been verified in Isabelle, ACL2, and Coq [ABRO8, HPR11]. If
work on a computational interpretation succeeds, then homotopy type theory would provide a sin-
gle framework for specifying and computing with mathematical objects, holding out the promise
of carrying out robust and verified mathematical computation. We plan to investigate applications
to these problems; a first step would be extracting algorithms from the above formalizations.

1.3 Computation

A critical open problem is whether homotopy type theory has a computational interpretation. This
would allow its use as a programming language, with univalence and higher inductive types being
new programming constructs. On the computer science side, univalence would mediate between
different representations of data structures. On the mathematical side, this would provide a mech-
anism for verified mathematical calculations in areas such as homotopy theory.

Formally, by a computational interpretation of a type theory, we mean an algorithm that, given
a closed element e (one with no undischarged assumptions) of natural number type N, deduces an
equation between e and some numeral k. Because e will generally involve functions with arbitrary
domain and range, this requires computing with functions of arbitrary type—stating the overall
theorem only for N offers some flexibility to solutions. In this section, we give some example
programming applications of such a computational interpretation, and then describe previous and
proposed work on this problem.

Structure transport and code reuse In a proof or program, one often needs to work with dif-
ferent definitions of the same data structure—one might lead to simpler definitions, while another
may be more efficient. Often these representations are in bijection with each other, so univalence
can be used to mediate between them. For example, in §1.1, we discussed how univalence enables
automatically lifting a bijection b : A = B to a bijection between group structures on A and B. A
computational interpretation would interpret this lifting as an algorithm. For instance, consider
two representations of the integers, Z in unary, and Z' in binary; these are related by a bijection
b : 7 = 7/, which by univalence (ua) automatically lifts to a bijection between group structures:

t : GroupStructure(Z) — GroupStructure(Z')
t(x) = transportGroupStructure (ua(b)ax)

However, when univalence is added as an axiom to type theory, this function # does not compute:
when applied to a group structure Gz on unary numbers, ¢(Gz) is a “stuck” program, and does
not compute to an explicit implementation of a group structure on binary numbers, because the
standard computation rule for transport is insufficient in the presence of univalence. Thus, type
theory with the univalence axiom does not immediately have a computational interpretation.

However, even with these stuck terms, it is still possible to develop and formalize mathematics:
1(Gz) is related by a path to an implementation of a group structure on Z' which does not use
univalence. The group structure Gz consists of operations such as addition @z : (Z x Z) — Z and
identity and inverses, along with proofs of the group laws. One way to derive a group structure on
Z', without using univalence, is by “wrapping” &7 with the bijection—converting arguments from
binary to unary and converting the result from unary to binary. This defines a group structure on
7', which is provably equal to #(Gy). Current developments perform a lot of this kind of reasoning
manually; a computational interpretation would provide insight into how to automate it.

Similarly, programmers often need to manipulate many different but bijective implementations
of a data structure. These arise sometimes simply because different code is written by different

Homotopy Type Theory 14

people, but also for more technical reasons. For instance, libraries for datatype-generic program-
ming implement operations, such as equality tests or printing, once and for all for a class of data
types. The representation of the data type in the library is often bijective, but not exactly equal,
to the one that programmers use in other code. Multiple implementations also arise in verified
programming: a simple data structure like lists will be refined many times to track different invari-
ants, such as sorted lists, or lists with a known length. “Forgetting” the refinement results in a data
structure that is bijective with the original type of lists. We propose to investigate a computational
interpretation of univalence supporting these applications, and to work on making these automatic
conversions efficient, possibly by using optimizations such as deforestation [Wad90].

Modular programming Univalence also has applications to the modular development of soft-
ware. Consider a simple dictionary interface DICT, which includes a type dict of dictionaries,
together with insertion and lookup functions. One can implement both a reference implementation
SlowDict of this interface using lists of key-value pairs—which requires only extremely simple
code, but has suboptimal running time— and an efficient implementation FastDict using a bal-
anced binary tree, which requires much more complex code.

One approach to program verification is to write both implementations and prove a relationship
between them, such as giving a bijection b between the two dicts and proving that all operations
behave the same up to b (e.g. b(SlowDict.insert(d;, (k,v))) = FastDict.insert(b(d), (k,v))). In this
case, by univalence, the two implementations will in fact be connected by an equality. Thus, pro-
grammers can reason about client code by instantiating it with the reference implementation, and
automatically obtain the corresponding properties for the efficient implementation. For example,
a client of this module would be a function client : DICT — C. Because functions take equals to
equals, client(SlowDict) will be equal to client(FastDict); thus any specification one proves about
client(SlowDict) automatically holds for client(FastDict). This style of reasoning is similar to the
reasoning about abstract types enabled by relational parametricity [Rey83]. While parametricity
allows a broader class of relationships between the two implementations, the technique described
here has more general applications; for example, one can expand the interface to include conve-
nient conversion to and from the reference implementation, modeling the concept of views for
abstract types [Wad87]. Moreover, integrating parametricity into proof assistants is a topic of cur-
rent research [BJP10]. Preliminary work [Shul3b] suggests that relationally parametric univalent
models exist, suggesting a potential avenue towards adding parametricity to homotopy type theory.

Language-based security In language-based approaches to security, the non-interference prop-
erty says that changing secret inputs does not change public outputs. One existing approach to
modeling non-interference is via indexed monads [CKPOS5], but this has the problem that secret
information can never be “declassified”, because it is impossible to escape from the monad. We
plan to investigate whether modalities as discussed in §1.1, which can be implemented by higher
inductive types, offer an alternative foundation for non-interference. For example, interpreting “‘se-
cret” as (—1)-truncated gives a coarse notion of security, because a function f : ||S||—; — X must
behave the same on any two arguments, though the “secret” input is permitted to influence any
“secret” ((—1)-truncated) part of the output. It may be possible to extend this idea by considering
different modalities corresponding to secrecy levels.

Modeling computational phenomena as HITs We will also explore modeling computational
phenomena as higher inductive types. One preliminary idea along these lines is to model the

Homotopy Type Theory 15

notion of a patch used in version control systems and collaborative editors. A patch represents
the difference between two document states; e.g. a basic patch might be “change character a to
character b at position 4.” If the language of patches is chosen appropriately, they can be modeled
as paths in a higher inductive type, whose generators are the basic patches. Moreover, patch
equality can be modeled as paths between paths. Writing an interpreter for this language of patches
is a programming application of the techniques used in calculating homotopy groups (§1.1).

Previous work on the computational interpretation Thus far, the members of this MURI team
have given computational interpretations for fragments of homotopy type theory, and work on
several approaches to the general problem is in progress. Conventionally, computation refers to a
sequence of definitional expansions that relate a closed program e : N to a numeral. However, in
homotopy type theory, we might instead interpret computation as producing a path. Preliminary
work has investigated both of these possibilities for fragments of homotopy type theory where all
types are 1-types, which includes many of the programming examples mentioned above. Several of
these preliminary results provide proofs of canonicity (every element of N is equal to a numeral);
so a computational interpretation is a proof of canonicity together with an algorithm for computing
the numeral, or a constructive proof of canonicity.

All of these results are based, either formally or informally, on semantic interpretations of
type theory in category-theoretic structures, such as groupoids, or homotopy theoretic structures,
such as simplicial sets. Licata and Harper [LH12] prove canonicity for a 1-truncated type theory
with a univalent universe of sets; this type theory adds many definitional equalities to the syntax,
inspired by the groupoid model of type theory [HS98]. However, they do not give an algorithm,
and definitional equality is not decidable, so this does not give a computational interpretation.
Coquand and Barras [CB13] construct a truncated simplicial model in standard intensional type
theory. This does give an algorithm for executing programs, but their work does not give a proof
of canonicity—one would need to prove additionally that the equations in the model correspond
to paths in the theory. A similar approach, considered by Awodey and Gambino, is to construct
the groupoid model of type theory [HS98] in a constructive framework, such as extensional type
theory [CAB™86] or the “sets” inside homotopy type theory. This also would give an algorithm, but
require a separate proof of canonicity. Shulman [Shul3b] has given a semantic proof of canonicity
up-to-paths (“homotopy canonicity”), but it is not clear whether this result is constructive and
therefore gives an algorithm.

Proposed work on the computational interpretation A first goal is to tie together the partial
results on 1-truncated homotopy type theory: we have canonicity proofs without algorithms and
algorithms without canonicity proofs, and should be able to combine the two. This would enable
a computational implementation of 1-truncated homotopy type Theory, which would be sufficient
for many of the executing the programming examples sketched above. Licata and Harper are inves-
tigating a combination of their canonicity proof with the homotopy canonicity proof by Shulman,
which would give a constructive proof of homotopy canonicity; this is one potential route to this
goal. We could then consider implementations of the resulting algorithms in existing or prototype
proof assistants, depending on exactly what result is proved.

Another piece of proposed work is to extend these results to include higher inductive types
(e.g. to be able to execute the calculation of 71 (S')). None of these existing results consider higher
inductive types, though it seems that many of them would be compatible with them.

Towards the more general problem of giving a computational interpretation of full homotopy

Homotopy Type Theory 16

type theory, recent work by Coquand et. al. [BCH13] gives a constructive model of type theory
in cubical sets, yielding an algorithm for executing programs, but not a proof of canonicity. To
obtain canonicity, important work remains to relate the equational theory of this cubical model
to the globular syntax of type theory, or to revise the syntax of type theory to be cubical. The
former possibility could result in an algorithm to “compute up to homotopy” within existing type
theory, which could be implemented by modifying existing proof assistants such as Coq. The latter
could potentially lead to prototype implementations of new proof assistants, based on a cubical type
theory. It may also be possible to use the insights gained in the cubical model to give a constructive
globular definition of weak oo-groupoids, which would be another approach to this problem.

1.4 Semantics

By semantics of a formal system, such as type theory, we mean the investigation of models of
that theory constructed within some other system, such as a model of type theory constructed in
set theory. Such a model shows that the first system is at least as consistent as the second (an
absolute consistency proof is impossible, by Godel’s incompleteness theorem). While one model
is enough to show consistency, having many models of a theory is also useful for establishing
independence and constructivity results. If a statement is false in some model—such as the law
of excluded middle—then it can not be provable in the system, even if it holds in the “standard”
model. A model of one theory in another can also reduce computational problems in the first to the
second. In the present work, we rely heavily on models to suggest new principles to incorporate
synthetically, and to interpret synthetic theorems as statements about more explicit mathematical
objects. For foundational theories like type theory, each model furnishes a separate “universe of
mathematics” with an “internal language” in which all the usual theorems are true for the usual
reasons, but which when viewed “from the outside” can have very informative content.

Expected models In the “standard” model of ordinary type theory, types are interpreted by
sets, whereas in “nonstandard” models, they may be interpreted by sheaves, diagrams, topolog-
ical spaces, smooth manifolds, or even computational objects such as PERs. The standard model
yields consistency, while the nonstandard ones give independence results and allow type theory
to be used as an “internal language” for many other structures. One direction of research is to
improve these models to handle the new features of homotopy type theory. Since models of ordi-
nary type theory are naturally formulated as certain kinds of categories called 1-toposes, we expect
models of homotopy type theory to be naturally formulated as certain categories with homotopy
theory, now commonly known as “co-toposes” [TV05, Rez05, Lur09]. This is also suggested by a
clear similarity between the univalence axiom and one of the defining features of an co-topos (an
“object classifier”). In particular, most models of ordinary type theory can be “homotopified” into
co-toposes that ought to provide semantics for homotopy type theory.

In addition to relative consistency, a precise result of this sort would provide a fertile ground
for independence results, as well as ways to use homotopy type theory as an “internal language”
for constructions in co-toposes. This encompasses equivariant and parametrized homotopy the-
ory, homotopical algebraic geometry, and also more exotic kinds of “synthetic” mathematics. The
most explored example of this sort is called “cohesive” homotopy type theory, in which the types
(corresponding to objects of the co-topos) have not only eo-groupoid structure but “smooth struc-
ture”, thereby admitting a synthetic kind of differential geometry and calculus. Just as synthetic
homotopy theory is a natural home for classical algebraic topology, cohesive homotopy theory is a

Homotopy Type Theory 17

natural home for differential cohomology and quantum gauge field theory [Sch13, SS12].

Constructing such models inside a known computational system, such as ordinary intensional
type theory, would yield an algorithm for computing with homotopy type theory. In addition to
these models in “Grothendieck” co-toposes (consisting of sheaves), analogies to ordinary type the-
ory suggest that there should also be models in “elementary” oo-toposes, including “realizability”
examples built out of PERs or assemblies. Models of this sort may improve our understanding of
how to compute in homotopy type theory, as well as providing a way to attack more independence
results. Finally, it would be best if all of these models could be constructed inside homotopy type
theory itself, making it an autonomous foundation for mathematics.

Known models At present, the best framework for constructing models of homotopy type the-
ory uses “Quillen model categories”, a toolbox from abstract homotopy theory giving a way
to “present” co-categories. The “basic” Quillen model category consists of simplicial sets, and
presents the co-topos of co-groupoids; but any co-topos can be presented by some such model cate-
gory. Awodey and Warren [AW09] have shown how any Quillen model category yields a semantics
for type theory, modulo coherence issues. And Voevodsky has shown [KLV12] that the resulting
semantics in simplicial sets satisfies the univalence axiom (indeed, this was the motivating model
for the formulation of univalence), using a method which also deals with the coherence questions.
Unpublished work of Lumsdaine and Warren gives a general way to solve such coherence ques-
tions for all type forming operations except for universes, and Cisinski [Cis12] and Gepner and
Kock [GK12] have shown that any co-topos can be presented by a Quillen model category to which
this theorem applies. Shulman [Shul3b, Shul3a] has shown that in addition to simplicial sets, a
few other very special co-toposes admit coherent univalent universes. Finally, unpublished work
of Lumsdaine and Shulman shows that the semantics of most Quillen model categories supports
higher inductive types as well. Thus, we know that any co-topos admits a model of homotopy type
theory, with higher inductive types and an “incoherent” version of univalence; and in some special
cases (including simplicial sets) we also have coherent univalence.

All of these models are constructed inside of set theory. However, the construction of coherent
univalent universes in [Shul3b] can also be performed in homotopy type theory, providing least a
small class of model constructions completely independently of set theory. Moreover, work is in
progress on a constructive model in cubical sets [BCH13], and Awodey and Bauer have constructed
a 1-truncated realizability model using groupoids inside an ordinary realizability model.

Current and future work An obvious direction to explore is whether all co-toposes can be pre-
sented by Quillen model categories that satisfy univalence coherently. This seems to be a difficult
problem, but it may be possible to achieve by a careful choice of presentations. However, there
are other potential ways to achieve a satisfactory theory of co-topos models. It may be possible
to avoid Quillen model categories and construct a model of type theory directly in an co-category.
This would probably require some sort of coherence theorem for type theory, such as extending
the universal property of the syntactic C-system discussed in §1.2 to an oo-categorical one.

On the other hand, we could modify type theory to make it match the desired categorical models
more closely. This may also be necessary to describe co-topos models internally to homotopy type
theory, due to the problem of infinite objects described in §1.1. Thus, we plan to investigate type
theories with fewer judgmental equalities, and with some way to represent infinite constructions
internally. The interplay between these desiderata and the constructive algorithmic needs of type
theory, as described in §1.3, will guide the team through the design space to the best solutions.

Homotopy Type Theory 18

In addition to putting the basic theory of model construction on a firm footing, we also plan to
investigate particular models more deeply. Homotopy type theory, and in particular the univalence
axiom and higher inductive types, should suggest a good definition of “‘elementary co-topos” (which
is still lacking). We can then investigate “realizability” models of this sort, generalizing Awodey
and Bauer’s work to higher dimensions. Such categories may not be presentable by Quillen model
categories, so they provide another reason to seek a better general theory of models.

Homotopy Type Theory 19

References

[ABO4]

[ABROS]

[AKL13]

[AKS13]

[AWO09]

[BCO4]

[BCH13]

[BJP10]

[CABT86]

[CB13]

[Cis12]

[CKPO5]

[Con83]

Steven Awodey and Andrej Bauer. Propositions as [types]. J. Logic Comput.,
14(4):447-471, 2004.

Jesus Aransay, Clemens Ballarin, and Julio Rubio. A mechanized proof of the basic
perturbation lemma. J. Automat. Reason., 40(4):271-292, 2008.

Jeremy Avigad, Krzysztof Kapulkin, and Peter Lumsdaine. Homotopy limits in type
theory. To appear in Mathematical Structures in Computer Science, 2013.

Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univalent categories
and the Rezk completion. To appear in Mathematical Structures in Computer Science;
arXiv:1303.0584, 2013.

S. Awodey and M. A. Warren. Homotopy theoretic models of identity types. Math.
Proc. Camb. Phil. Soc., 146:45-55, 2009.

Yves Bertot and Pierre Castéran. Interactive theorem proving and program devel-
opment: Coq’Art: The calculus of inductive constructions. Springer-Verlag, Berlin,
2004.

Marc Bezem, Thierry Coquand, and Simon Huber. A model of type theory in cubical
sets. Preprint, September 2013.

Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Parametricity and depen-
dent types. In International Conference on Functional Programming, 2010.

Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cre-
mer, R. W. Harper, Douglas J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden,
James T. Sasaki, and Scott F. Smith. Implementing Mathematics with the NuPRL
Proof Development System. Prentice Hall, 1986.

Thierry Coquand and Bruno Barras. A generalization of takeuti-gandy interpretations.
Preprint, April 2013.

Denis-Charles Cisinski. Blog comment on post ‘“The mysterious nature of
right properness”. http://golem.ph.utexas.edu/category/2012/05/the_
mysterious_nature_of_right.html\#c041306, May 2012.

Karl Crary, Aleksey Kliger, and Frank Pfenning. A monadic analysis of information
flow security with mutable state. Journal of Functional Programming, 15:249-291, 3
2005.

Robert L. Constable. Mathematics as programming. In Proceedings of the Workshop
on Programming and Logics, volume 164 of LNCS, pages 116—128. Springer-Verlag,
1983.

Homotopy Type Theory 20

[Con85]

[GK12]

[GKN10]

[GM93]

[Hall3]

[Har96]

[Her13]

[HHM™ 10]

[HPR11]

[HPRS11]

[HS98]

[KLV12]

[LHI2]

[LS13]

[Lur09]

Robert L. Constable. Constructive mathematics as a programming logic I: Some prin-
ciples of theory. In Annals of Mathematics, volume 24, pages 21-37. Elsevier Sci-
ence Publishers, B.V. (North-Holland), 1985. Reprinted from Topics in the Theory
of Computation, Selected Papers of the Internationall Conference on Foundations of
Computation Theory, FCT ’83.

David Gepner and Joachim Kock. Univalence in locally cartesian closed co-categories.
arXiv:1208.1749, 2012.

Adam Grabowski, Artur Kornitowicz, and Adam Naumowicz. Mizar in a nutshell. J.
Formaliz. Reason., 3(2):153-245, 2010.

M. J. C. Gordon and T. F. Melham, editors. Inroduction to HOL: A theorem proving
environment for higher-order logic. Cambridge University Press, 1993.

Thomas C. Hales. Formalizing NIST standards. Jigger Wit, 2013.
http://jiggerwit.wordpress.com/2013/11/04/formalizing-nist-standards/.

John Harrison. HOL light: a tutorial introduction. In Mandayam Srivas and Al-
bert Camilleri, editors, Proceedings of the First International Conference on Formal
Methods in Computer-Aided Design, pages 265-269, 1996.

Hugo Herbelin. A dependently-typed construction of semi-simplicial types. To appear
in Mathematical Structures in Computer Science, 2013.

Thomas C. Hales, John Harrison, Sean McLaughlin, Tobias Nipkow, Steven Obua,
and Roland Zumkeller. A revision of the proof of the Kepler conjecture. Discrete
Comput. Geom., 44(1):1-34, 2010.

Jonathan Heras, Vico Pascual, and Julio Rubio. Proving with ACL2 the correctness
of simplicial sets in the Kenzo system. In Logic-based program synthesis and trans-
formation, volume 6564 of Lecture Notes in Comput. Sci., pages 37-51. Springer,
Heidelberg, 2011.

J. Heras, V. Pascual, J. Rubio, and F. Sergeraert. fKenzo: a user interface for compu-
tations in algebraic topology. J. Symbolic Comput., 46(6):685-698, 2011.

M. Hofmann and T. Streicher. The groupoid interpretation of type theory. In Sambin
and Smith [SS98], pages 83-111.

Chris Kapulkin, Peter LeFanu Lumsdaine, and Vladimir Voevodsky. The simplicial
model of univalent foundations. arXiv:1211.2851, 2012.

D. Licata and R. Harper. Canonicity for 2-dimensional type theory. POPL, 2012.

Daniel R. Licata and Michael Shulman. Calculating the fundamental group of the
circle in homotopy type theory. In LICS’13, 2013. arXiv:1301.3443.

J. Lurie. Higher Topos Theory. Princeton University Press, 2009.

Homotopy Type Theory 21

[ML75]

[ML84]

[MLO98]

[Nor07]

[NPWO2]

[Pro13]

[RERO9]

[Rey83]

[Rez05]

[RR13]

[Sch13]

[Sco72]

[Shul3a]

[Shul3b]

[SS98]

P. Martin-L6f. An intuitionistic theory of types: predicative part. In H. E. Rose and
J. C. Shepherdson, editors, Logic Colloquium ’73, pages 73—118, Amsterdam, 1975.
North-Holland.

P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.

P. Martin-Lof. An intuitionistic theory of types. In Sambin and Smith [SS98], pages
127-172. This paper was originally a 1972 preprint from the Department of Mathe-
matics at the University of Stockholm.

Ulf Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers University of Technology, 2007.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL. A proof
assistant for higher-order logic, volume 2283 of Lecture Notes in Computer Science.
Springer Verlag, Berlin, 2002.

The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations
of Mathematics. Institute for Advanced Study, 2013.

Ana Romero, Graham Ellis, and Julio Rubio. Interoperating between computer al-
gebra systems: computing homology of groups with Kenzo and GAP. In ISSAC
2009—Proceedings of the 2009 International Symposium on Symbolic and Algebraic
Computation, pages 303-310. ACM, New York, 2009.

J. C. Reynolds. Types, abstraction, and parametric polymorphism. In Information
Processing 83, pages 513-523. North-Holland, Amsterdam, 1983.

Charles Rezk. Toposes and homotopy toposes. http://www.math.uiuc.edu/
~rezk/homotopy-topos-sketch.pdf, 2005.

Ana Romero and Julio Rubio. Homotopy groups of suspended classifying spaces: an
experimental approach. Math. Comp., 82(284):2237-2244, 2013.

Urs Schreiber. Differential cohomology in a cohesive infinity-topos.
arXiv:1310.7930, 2013.

Dana Scott. Continuous lattices. Springer Lecture Notes in Mathematics, 274:97136,
1972.

Michael Shulman. The univalence axiom for elegant Reedy presheaves.
arXiv:1307.6248, 2013.

Michael Shulman. Univalence for inverse diagrams and homotopy canonicity. To
appear in Mathematical Structures in Computer Science; arXiv:1203.3253, 2013.

G. Sambin and J. Smith, editors. Twenty-Five Years of Constructive Type Theory,
volume 36 of Oxford Logic Guides, Oxford, 1998. Oxford University Press.

Homotopy Type Theory 22

[SS12]

[Stro1]

[TVO5]

[Voe06]

[VoelO]

[Wad87]

[Wad90]

Urs Schreiber and Michael Shulman. Quantum gauge field theory in cohesive ho-
motopy type theory. In QPL’12, 2012. http://ncatlab.org/schreiber/files/
QFTinCohesiveHoTT.pdf.

Thomas Streicher. Semantics of type theory: correctness, completeness, and indepen-
dence results. Birkhauser Boston Inc., Cambridge, MA, USA, 1991.

Bertrand Ton and Gabriele Vezzosi. Homotopical algebraic geometry 1: topos theory.
Advances in Mathematics, 193(2):257 — 372, 2005.

V. Voevodsky. A very short note on the ho-
motopy A-calculus. Unpublished note, available at

http://www.math.ias.edu/ vladimir/Site3/UnivalentFoundations.html,
2006.

V. Voevodsky. Univalent foundations project. Unpublished note, available at
http://www.math.ias.edu/ vladimir/Site3/UnivalentFoundations.html,
2010.

Philip Wadler. Views: a way for pattern matching to cohabit with data abstraction. In
Principles of Programming Languages, 1987.

Philip Wadler. Deforestation: transforming programs to eliminate trees. Theoretical
Computer Science, 73(2):231 — 248, 1990.

