
HOMOTOPY TYPE THEORY

Egbert Rijke

July 6, 2012

A MASTER THESIS FOR THE MATHEMATICAL SCIENCES PROGRAMME
AT UTRECHT UNIVERSITY, THE NETHERLANDS.

SUPERVISORS: ANDREJ BAUER, BENNO VAN DEN BERG AND JAAP
VAN OOSTEN.

WRITTEN IN LJUBLJANA, SLOVENIA.

CONTENTS

Introduction 3

1 A short guide to constructive type theory 7
1.1 A dependent type over a type . 8

1.1.1 Dependent products . 9
1.1.2 Dependent sums . 10

1.2 Defining types inductively . 12

2 Type theory with identity types 14
2.1 The inductive definition of identity types 15
2.2 More properties of paths . 20

2.2.1 Preservation of composition . 21
2.2.2 Preservation of inversion . 23
2.2.3 The dependent type Y(a) . 23

1

2.2.4 Higher paths . 24
2.2.5 Paths and dependent sums . 25

2.3 Homotopy type theory . 26
2.3.1 Homotopies . 26
2.3.2 Contractible spaces . 29
2.3.3 Homotopy fibers . 30

2.4 Equivalences . 31
2.4.1 Definition and first applications of equivalences 31
2.4.2 Homotopy isomorphisms are equivalences 32
2.4.3 Equivalences of total spaces and fiberwise equivalences 36

2.5 The axiom of choice and function extensionality 38
2.5.1 A weak version of the axiom of choice 39
2.5.2 The strong function extensionality principle from the weak . . 41

2.6 Basic examples of equivalences . 42
2.7 The univalence axiom . 48
2.8 A type theoretical Yoneda lemma . 53
2.9 Adjunctions of dependent types . 56

2.9.1 Definition and basic properties of adjunctions 56
2.9.2 Existential and universal quantification of dependent types . . . 59
2.9.3 Exponentiation of dependent types 61

3 Higher inductive types 63
3.1 The idea of higher inductive types . 63
3.2 Examples of some inductive types with paths 65

3.2.1 The interval . 65
3.2.2 The circle . 68
3.2.3 An alternative circle . 71

3.3 The fundamental groupoid of the circle 73
3.3.1 The type of integers . 73
3.3.2 The universal covering of the circle 74

3.4 Basic properties of paths between paths 76
3.5 Some examples of inductive spaces with 2-cells 79

3.5.1 The disc . 79
3.5.2 The sphere . 84

3.6 Directed colimits . 86

A The dependent product as an inductive space 92

B The circle in the category of Groupoids 94

References 97

2

INTRODUCTION

In this thesis we will investigate type theory with identity types, which was invented by
Per Martin-Löf in the 1970’s. While the theory of identity types was originally intended
to internalize the notion of equality in type theory, and thereby enableing one to prove
equality of two terms by inhabiting the corresponding identity types, it has become
apparent in the last decade that it provides a setting for doing formal homotopy theory.
The main idea was to interpret a proof of equality for two terms a and b as a path from
a to b. The pioneers of this interpretation were Steve Awodey, Michael Warren and
Vladimir Voevodsky and the theory that resulted from their work is currently intensively
investigated, both from it’s type theoretical side and by providing new models for the
theory. This thesis could be seen as a report on the recent type theoretical results in this
program.

Chapter 1 In the first chapter we give a brief overview of (dependent) type theory.
Type theory is not in the standard curricula of neither Utrecht University nor at the
University of Ljubljana and therefore I felt that it was necessary to include a chapter of
this sort. Although we keep the terms elementary and understandable for a mathematical
audience, this chapter serves several aims. At several moments in the text we will point
towards instances where it would be very helpful if we would have identity types and
therefore directing the story to the parts of type theory that are for us the most relevant.
Also, we give many examples of inductively defined types. The reader will see that
many basic constructions in mathematics have their inductive counterparts in type theory.
Understanding inductively defined types at a basic level is important for intensional type
theory, since identity types are defined inductively. Moreover, in chapter 3 we will use
the guiding principles of defining types inductively to study higher inductive types. As
a teaser, we will prove the type theoretical analogue of the axiom of choice.

Chapter 2 In the second chapter the main part of the thesis begins. We will introduce
identity types and develop the theory from the ground up. The results in this chapter
originate from the Coq repositories, written by Mike Shulman, and from the original
work of Vladimir Voevodsky. After having introduced identity types and the basic
properties of paths, we will be mainly interested in the interaction between functions
and paths. This will lead us to the theory of homotopies, the notion of contractability,
equivalences of types and function extensionality. One of the more useful results about
equivalences is that every isomorphism is an equivalence, which will simplify the search
for equivalences between spaces significantly. Nevertheless, as soon as function spaces
come into play, we will need the principle of function extensionality to complete any
proof of equivalence. Function extensionality is not part of type theory and it needs
to be assumed as an axiom. But we will see that the natural principle of function
extensionality follows from a very weak form of function extensionality: the principle
that says that any product of contractible spaces is itself contractible. This principle

3

could also be regarded as a weak version of the full form of the axiom of choice. In
chapter 1 we introduced the axiom of choice as a certain function; the full form of the
axiom of choice is that this function is an equivalence. While we derive the strong form
of function extensionality from the weak, we will witness a delicate interplay between
choice and extensionality.

After the exposition of the function extensionality principle and the axiom of choice,
we investigate the similarities between paths in a type and equivalences between types.
Every path between two types in a universe induces an equivalence between them.
Voevodsky’s univalence axiom then says that the transition from paths to equivalences is
itself an equivalence. In loose terms: there are no other equivalences than those induced
by paths. The univalence axiom is an extensionality principle for types. It gives us a
way to construct a path between two types by constructing an equivalence between them.
This idea can be taken a step further: we will give a proof that the univalence axiom
implies function extensionality. After this is established, we give two new applications
of the univalence axioms. The first is a correspendence between the space of dependent
types over a type A and the space of functions to A. The second is a proof that a function
from A to B is exactly what it would be in set theory: a total single-valued relation from
A to B.

In the last part of this chapter we take a digression from the Coq repositories and
prove a type theoretical analogue of the Yoneda lemma. Using the basic equivalences
we had derived earlier, this is not a difficult task anymore. But it does justify a higher
categorical point of view regarding types and dependent types over types. With the
same techniques, we will be able to prove that various basic adjunctions of the theory of
presheaves also translate to adjunctions between the spaces of dependent types. As far
as I know, the results presented in this last part of chapter 2 are new, although I have
heard from Andrej that some experts in the field have known them already before me.

Chapter 3 The second main chapter of this thesis deals with higher inductive types.
We introduce higher inductive types by example. Higher inductive types are types
that are defined inductively, but instead of only giving point constructors as it’s basic
constructors, we also allow ourselves to use path constructors as basic constructors.
And of course higher paths... The first two examples we give are the interval, described
as the inductive type with two points and a path between them as basic constructors,
and the circle. Using function extensionality, we will be able to find correspondence
principles that replace the induction principles we have given in both the cases of the
interval and the circle. Those are equivalences in analogy to the bijections of homsets
found for universal objects in category theory. Thus, we will see exactly how the
induction principle is a universal property. Also, even though the interval turns out to be
contractible, it’s induction principle is the prototype for all higher inductive types with
paths as basic constructors.

We then continue to develop the theory of higher paths to be able to formulate the
induction principles for higher inductive types with higher paths as basic constructors.
The two basic examples we give are the disc and the sphere. Once we have been able to
formulate the induction principle for the disc, we will see that the induction principles
for all types with 2-paths as basic constructors are similar. Also, we will derive a

4

correspondence theorem for both the disc and the sphere.

Conventions The fact that this is a thesis in constructive type theory also has its
implication for the structure of the document. Lemmas and theorems, for instance,
all define certain functions which are constructed in their proofs. Consequently, if
an assertion is of the form ‘there exists a term x in A such that. . .’ will be proved by
constructing an x with the asserted property. If we later make use of this assertion,
we mean to make use of exactly that term x which has been constructed in the proof,
contrary to the advise Serre had given in his talk1 ‘How to write mathematics badly’.
Likewise, the proof of an assertion of the form ‘for all terms x of A we have. . .’ is a
function which takes terms of A as arguments. If we later make use of such an assertion,
we mean to make use of the function we have constructed in its proof. These are not
conventions which I have invented for the purpose of writing this thesis but it rather
follows practice of how Coq code is written.

A remark on our notation for path spaces is also in place here. If p is a path from x
to y, we denote this by p ∶ x↝ y, following the suggestions of the earlier Coq repositories
about homotopy type theory. The Coq notation has recently changed to p ∶ x == y, which
is more in line with the interpretation of p as a proof of propositional equality of x and
y. In this thesis I have decided to stick with the former↝ notation. One of the reasons
is that we will work a lot with commutative diagrams, where the presentation is much
clearer if the direction of the identity proofs is clear from the notation.

Shortcomings Originally, I had intended to concentrate more on interpretations of
intensional type theory. Since Hofmann and Streicher had presented their groupoid
model of intensional type theory, and thereby made it apparent that type theory is not
extensional, various other models have been found. Among those, the most noticeable
are the simplicial sets model and the interpretation of type theory in arbitrary model
categories. The discovery of these models has contributed greatly to the momentum of
this research area and it also raises the desire to find out what the various notions of type
theory type theory become in these interpretations. I have made a very small step at
this, by proving that the interpretation of the circle in the groupoid model is (equivalent
to) the group of integers. But this leaves much to be desired: what is the circle in the
model of simplicial sets, or in a model category of topological spaces? What about other
higher inductive types: are they always the CW complexes you would guess they are,
based on their basic constructors?

Regrettably, I have not collected enough material on the interpretations of intensional
type theory in the year that I have done the research for this thesis to fill a chapter. The

1The videos of his talk are available in three parts via the urls

part 1 http://www.dailymotion.com/video/xf88b5_jean-pierre-serre-writing-
mathemati_tech

part 2 http://www.dailymotion.com/video/xf88en_jean-pierre-serre-writing-
mathemati_tech

part 3 http://www.dailymotion.com/video/xf88g3_jean-pierre-serre-writing-
mathemati_tech

5

http://www.dailymotion.com/video/xf88b5_jean-pierre-serre-writing-mathemati_tech
http://www.dailymotion.com/video/xf88b5_jean-pierre-serre-writing-mathemati_tech
http://www.dailymotion.com/video/xf88en_jean-pierre-serre-writing-mathemati_tech
http://www.dailymotion.com/video/xf88en_jean-pierre-serre-writing-mathemati_tech
http://www.dailymotion.com/video/xf88g3_jean-pierre-serre-writing-mathemati_tech
http://www.dailymotion.com/video/xf88g3_jean-pierre-serre-writing-mathemati_tech

observation that the groupoid interpretation of the circle is the integers is included in
Appendix B.

A second point of concern is that I leave λ somewhat mysterious. I don’t manage
to explain well why it is that λx. f (x) is not provably equal to λx.g(x) if we have
f (x) = g(x) for all x ∶ A. My current understanding of this is that λ actually takes
entailments x ∶ A ⊢ f (x) ∶ P(x) as an argument, but I have never seen this written down
somewhere.

A last shortcoming in this thesis is that I will not give much details about what
universes are. It will be assumed that there is a hierarchy of universes, where a universe
at level k is a type of the universe at level k+1. I will mostly work in the lower few
universes: at the bottom for types, one level higher for dependent types and occasionally
another level up. But I must admit here that I haven’t studied universes well enough to
give a good explanation about them.

Acknowledgments I am very grateful for the guidance and insights Andrej Bauer
gave me during this project. He has been very good at giving perspective while I
was trying to learn and work with type theory. It happened several times that clumsy
technical result of mine needed his conceptual understanding in order to be written
down properly. I definitely owe my intuition in homotopy type theory to him.

I’d also like to thank Špela Špenko for her support. Chapter 1 of this thesis is written
for her, so that she could get an idea of what I have been working on.

During the Fourth Workshop on Formal Topology I had many fruitful and insightful
discussions. Some of them have even made it to this thesis. So I’d like to thank also
Dan Licata and Bas Spitters.

Finally, I’d like to thank Benno van den Berg and Jaap van Oosten for reading an
early version of this thesis and suggesting many improvements.

EGBERT RIJKE
JUNE 2012, LJUBLJANA

6

1. A SHORT GUIDE TO CONSTRUCTIVE TYPE THEORY

This short chapter is aimed at my fellow students and mathematicians who never had
a course in type theory. The world of type theory is a bit like the world of set theory,
in the sense that there are types A, B, C,... and those types can have terms a0,a1, . . . ∶ A.
But types may have a hidden structure that keeps their terms in a shadowy corner where
they are hard to get a hold on. We give status to this dark nature of the terms by allowing
ourselves only the constructive methods to reason about terms. For example, to find a
term of the product A×B of the types A and B the only thing we can do is constructing
a term a of type A and a term b of type B and conclude that the pair ⟨a,b⟩ is a term of
A×B.

Initially, the vocabulary of type theory is rather small. In non-dependent type theory
there are four things we can say, i.e. there are four judgments that can be made:

A is a type: A ∶Type

a is a term of type A: a ∶ A
A and B are equal types: A = B ∶Type

a and b are equal terms of type A: a = b ∶ A.
Dependent type theory, on which we will rely in this thesis, has furthermore the judg-
ments

P(a) is a type for every a ∶ A: a ∶ A ⊢ P(a) ∶Type

f (a) ∶ P(a) for every a ∶ A: a ∶ A ⊢ f (a) ∶ P(a).
These can be thought of in terms of indexed sets, but in type theory they become indexed
types or rather dependent types. In this work you might even catch us on using the term
‘fibration’ for dependent type, because dependent types are interpreted by fibrations
when we interpret types as topological spaces. But for now, the indexed set interpretation
will do and in that case, the judgment a ∶A⊢ f (a) ∶P(a) is to be interpreted as a function
that sends an element a of the indexing type A to the type P(a). We call such a f a
dependent function, or a section of the dependent type P. Recall from set theory that if{Pa ∶ a ∈ A} is an indexed set, then the set∏a∈A Pa consists exactly of these sections. We
will see a similar type∏(a ∶ A), P(a) constructed in section 1.1.1.

The equality that we use here is ‘equality in the strongest form’, or definitional
equality. The thing that you should keep in mind with definitional equality is that if
f and g are functions from A to B such g has the same values as f but is computed
in a different way, then the functions f and g are not definitionally equal even though
we would consider them to be equal from a set theoretical point of view (by function
extensionality). The point here is that we might have an interpretation of type theory in
which there is a type containing two functions for which the number of steps a function
needs to compute the value at a certain point might be relevant, so we consider functions

7

that involve different computations as different elements even if there is a proof that
their values are always the same. The main topic of this thesis is the propositional
equality which exactly addresses this point. The key distinction between definitional
and propositional equality is that definitional equality is a syntactical notion while
propositional equality is internal in the theory of types: there are types IdA(x,y) of
propositional equality for every two terms x and y of a given type A and when they are
inhabited, i.e. when an element of IdA(x,y) can be constructed, we say that x and y are
propositionally equal. These types of propositional equality are the identity types of the
next chapter 2.1. In this guide we will point to several instances where the presence of
identity types is desired.

Nevertheless, there are a few things we can say about definitional equality. If a is a
term of type A and A =B ∶Type then a is a term of type B. If P is a dependent type over A,
i.e. if we have a ∶ A ⊢ P(a) ∶Type, and if a = b ∶ A, then we have P(a) = P(b) ∶Type and
if a ∶ A ⊢ f (a) ∶ P(a) and a = b ∶ A, then we have f (a) = f (b) ∶ P(a). These essentially
say that we might freely substitute equal terms or types.

A small note: we will not use the ⊢ notation in this thesis and the notation with
inference lines make no appearance at all. Instead, we have decided to stay syntactically
closer to the notation in ordinary mathematics and the mathematical models that interpret
type theory, so that readers from outside this area do not also have to bridge the linguistic
gap.

1.1 A dependent type over a type
Suppose that A is a type. A ‘function’ that assigns to each term a of A a type P(a)
is said to be a dependent type over A. Dependent types are abundant in mathematics.
Indexed sets form a main example, or indexed objects in a category (i.e. a functor from
a set to a category). A continuous function f ∶ X → A also gives rise to the dependent
space a↦ f −1({a}) sending a point to its inverse image.

The notion of dependent type can be seen as a way to associate a property to the
terms. Thus, if P is a dependent type over A, then an inhabitant u of the type P(a) is a
witness that this property holds for a. In that sense, a dependent type P over A plays
the role of ‘subtype’ of A. A real analogue of the notion of subset in set theory does
not exist in type theory because the association of the type A with a term a of type A is
inherent in the sense that if a is a term of type A then it is not a term of another type B.
Thus one can take the point of view that a dependent type over A is a way around this –
from a set theoretical point of view – drawback.

Dependent types can also depend over other dependent types. If P is a dependent
type over A, then we may have that Q(a,u) is a type for every a ∶ A and u ∶ P(a). In that
case, Q is said to be a dependent type over P. This generalizes of course to any number:
we may have types depending on Q and so forth. All of these are called dependent
types.

The point of view we take throughout this thesis is that a dependent type is a map
of a type into a universe. We assume that there is a hierarchy of universes Type1,
Type2,...,Typeω , where each Typek is closed under the basic constructions such as
dependent products and dependent sums. Moreover, Typek is a term of Typek+1. Other
than this, we will not be very precise about what universes are. One reason is that

8

the author is not very familiar with them, another reason is that they form a topic of
current research. Also, we will not use the index notation and simply write Type. Hence
a dependent type P over A is denoted by P ∶ A→ Type, where the level k of Type is
assumed to be such that A ∶Typek.

1.1.1 Dependent products

Suppose that P ∶A→Type is a dependent type over A. Then we may form the dependent
product∏(a ∶ A), P(a), which is a type that behaves like a product in set theory or a
limit in category which is taken over a set. The terms of∏(a ∶ A), P(a) are functions
that take a term a of A to a term of type P(a) which we call sections of P. The dependent
product∏(a ∶ A), P(a) has the following property: each judgement a ∶ A ⊢ g(a) ∶ P(a)
defines a term

λa.g(a) ∶∏(a ∶ A), P(a).
Furthermore, if we have a section f ∶∏(a ∶ A), P(a) and an element a ∶ A, then we have
a term

evaluate(f ,a) ∶ P(a).
Of course, we denote evaluate(f ,a) simply by f (a) later on. The constructors λ and
evaluate satisfy the following property: if we can construct from each term a ∶ A a term
g(a) of P(a) and if x is a term of A, then

evaluate(λa.g(a),x) = g(x) (β -rule)

and when f ∶∏(a ∶ A), P(a) is a section of P we have

λa.evaluate(f ,a) = f (η-rule)

The β -rule asserts that λa.g(a) extends the choice of g(a) for a ∶ A while the η-rule
asserts that everything in∏(a ∶ A), P(a) is indeed a function and serves therefore as a
minimality principle for dependent product types.

It may happen, of course, that a dependent type is actually non-dependent, i.e. that
P(a) = B for all a ∶ A. In that case, an element of∏(a ∶ A), P(a) is just a function from
A to B, and we write A→ B for the type∏(a ∶ A), P(a).

The construction of dependent product easily generalizes to the situation where Q
a is a dependent type over a dependent type P over A. The dependent product type∏(a ∶ A), (∏(u ∶ P(a)), Q(a,u)) is denoted simply by∏(a ∶ A)(u ∶ P(a)), Q(a,u).

A note on notation: If f ∶∏(a ∶ A)(u ∶ P(a)), Q(a,u) is a dependent function it may
become cumbersome to write f (a,u) for the value of f at the points a ∶ A, u ∶ P(a). We
would much rather write f (u), since for u to be known, we must know the term a of A
for which u is a type of P(a). In other words, if u is known, then a is known implicitly.
To indicate that we wish to omit the implicitly known variables in a dependent product
type (and in a dependent sum type as well, we’ll soon come to those), we will write the
type as ∏{a ∶ A}(u ∶ P(a)), Q(a,u)

9

This is the same type; the curly brackets around a variable only indicate that reference
to that variable is omitted in the notation of the value of a function at that point.

Also, we use the convention that→ associates to the right. This means that we mean
A→ (B→C) whenever we write A→ B→C.

1.1.2 Dependent sums

Suppose that P ∶ A→ Type is a dependent type over a type A. Then there is the type∑(a ∶ A), P(a), which we call the dependent sum or the total space of P. It behaves
much like a disjoint sum of sets or like a colimit in a category taken over a set (i.e. no
morphisms to mess things up). For the dependent sum we introduce a function

⟨−,−⟩ ∶∏(a ∶ A), (P(a)→∑(x ∶ A), P(x))
which includes every a ∶ A and u ∶ P(a) as the pair ⟨a,u⟩ in ∑(a ∶ A), P(a). Thus, the
dependent sum consists of pairs. But our way of saying that it consists only of pairs
is via a minimality principle similar to the universal property of a colimit in category.
The minimality principle for ∑(a ∶ A), P(a) is the property that whenever we have a
dependent type

Q ∶ (∑(a ∶ A), P(a))→Type

over ∑(a ∶ A), P(a) and a dependent function

q ∶∏(a ∶ A)(u ∶ P(a)), Q(⟨a,u⟩)
assigning to each of the pairs a ∶ A and u ∶ P(a), a term of type Q(⟨a,u⟩), there is a
section σ(Q,q) ∶∏(w ∶∑(a ∶ A), P(a)), Q(w) of Q which satisfies

σ(⟨a,u⟩) = q(a,u)
for each a ∶ A and u ∶ P(a). The last equality expresses that σ is an extension of q via
the inclusion ⟨−,−⟩. This property basically says that to give a section of Q it is enough
to assign a point of Q(⟨a,u⟩) for each a ∶ A and u ∶ P(a) and it is in that sense that∑(a ∶ A), P(a) consists only of the pairs ⟨a,u⟩. Indeed, it allows us to prove that:

Lemma 1.1.1. For any dependent type P over a type A there are functions

proj1 ∶ (∑(a ∶ A),P(a))→ A,

proj2 ∶∏(w ∶∑(a ∶ A), P(a)) , P(proj1(w)).
with the property that ⟨a,u⟩ = ⟨proj1⟨a,u⟩,proj2⟨a,u⟩⟩ for every a ∶ A and u ∶ P(a).

PROOF. The first projection is defined by letting Q ∶ (∑(a ∶ A), P(a))→ Type be the
constant dependent type given by Q(w) = A, and by letting q be the function λ(a,u).a.
The minimality principle then gives a function σ ∶ (∑(a ∶ A), P(a)) → A with the
property that σ(⟨a,u⟩) = a. We define proj1 to be this σ .

10

For the second projection we let Q ∶ (∑(a ∶ A), P(a))→Type be the dependent type
given by

Q(w) ∶= P(proj1(w))
and let q ∶∏(a ∶ A)(u ∶ P(a)), Q(⟨a,u⟩) be the map λ(a,u).u. Then the minimality
principle gives a function σ ∶∏(w ∶∑(a ∶ A), P(a)), P(proj1(w)) with the property
that σ(⟨a,u⟩) = u. We define proj2 to be this σ .

It should be noted, though, that w and ⟨proj1(w),proj2(w)⟩ do not need to be
definitionally equal terms of∑(a ∶A), P(a) for every w. Instead, they are propositionally
equal, we will prove this fact in 2.1.10.

Another way of looking at the minimality principle for dependent sums is via the
equivalence ((∃xϕ)→ψ)↔ ∀x(ϕ →ψ)
in logic, which holds whenever the variable x does not occur in ψ . The minimality
principle of ∑(a ∶ A), P(a) ensures that we have an equivalence

((∑(a ∶ A),P(a))→ B) ≅∏(a ∶ A), (P(a)→ B)
for every type B. We have not introduced the notion of equivalence yet, but this should
clearly involve functions back and forth that behave like each others inverses in a
generalized sense. In fact, we can (and will demonstrate it in a moment) get quite far
with proving this equality, and we will get stuck exactly at the moment where we need a
type that expresses equality of certain terms: the type of propositional equality.

A function F from (∑(a ∶ A), P(a))→ B to ∏(a ∶ A), P(a)→ B is given by pre-
composition with ι . A function G in the other direction is given by the defining property
of the dependent sum by taking Q to be the constant dependent type Q(w) = B and by
taking q to be the function to which we wish to apply G. It is then immediate that G is a
section of F , i.e. that F ○G is the identity map on∏(a ∶A), P(a)→B. But the argument
to show that it is also a retraction is done via the defining property of the dependent
sum using the dependent type over∑(a ∶ A), P(a) that asserts that G(F(h))(w) = h(w)
for some h ∶ (∑(a ∶ A), P(a))→ B and w ∶∑(a ∶ A), P(a). These are instances of the
identity types that we will investigate thoroughly in the next chapter. Therefore, we
will postpone the full proof of the equivalence until lemma 2.6.3 in section 2.4.1 about
equivalences.

It should be noted that it is possible to introduce the dependent sums in a different
way, more similar to how we introduced the dependent product types, by stating that
for every w ∶ ∑(a ∶ A), P(a) there are elements proj1(w) of type A and proj2(w) ∶
P(proj1(w)), with the property that

w = ⟨proj1(w),proj2(w)⟩.
In this definition the space ∑(a ∶ A), P(a) is presented directly as a space of pairs ⟨a,u⟩
where a ∶A and u ∶P(a) while in our original definition this was hidden in the minimality
principle.

11

1.2 Defining types inductively
Many types in type theory can be defined by stating an induction principle for them. To
define a type inductively we have to specify the basic terms of that type and then we
have to state that that type satisfies a certain minimality principle. A good illustrative
example of this is the type N of natural numbers. It has a term zero and a successor
function S ∶ N→ N. To show that some property P holds for the natural numbers it
suffices to show that that property holds for zero and that whenever the property holds
for a number n ∶N, then it also holds for S(n). In type theory this means that whenever
P ∶N→Type is a dependent type over N, to show that∏(n ∶N), P(n) holds it suffices
to give a term of type P(zero) and a term of type

∏(n ∶N), P(n)→ P(S(n)).
Thus, the induction principle for N becomes a way to define sections of the dependent
types P over N. In full, the induction principle for N becomes: whenever we have

p ∶ P(zero)
f ∶∏(n ∶N), P(n)→ P(S(n))

then there is a section σ ∶ ∏(n ∶ N), P(n) with the property that σ(zero) = p and
f (n)(σ(n)) = σ(S(n)) for all n ∶N. In this style we can define many types.

Example 1.2.1. We can define the type unit inductively by specifying one constructor
tt ∶ unit. The induction principle for unit becomes that whenever P ∶ unit→ Type is a
dependent type over unit and p ∶ P(tt), then there is a section σ ∶∏(x ∶ unit), P(x) with
the property that σ(tt) = p. Using the dependent type of identity types that assert that x
equals tt we will be able to show in lemma 2.3.15 that every element of unit is equal to
tt. ★
Example 1.2.2. The empty type ∅ is defined to have no constructors and the induction
principle is that whenever P is a dependent type over ∅, there exists a section of P. ★
Example 1.2.3. Suppose that A and B are types. Then we may define the type A+B
inductively to be the type with basic constructors

ιA ∶ A→ A+B

ιB ∶ B→ A+B.

The induction principle for A+B becomes that whenever we have a dependent type P
over A+B and if we have the functions

kA ∶∏(a ∶ A), P(ιA(a))
kB ∶∏(b ∶ B), P(ιB(b))

then there exists a section σ ∶∏(w ∶ A+B), P(w). This induction principle closely
follows the logic principle

(ϕ → χ)→ (ψ → χ)→ (ϕ ∨ψ → χ).
to introduce a disjunction on the left. ★

12

Example 1.2.4. Suppose that A and B are types. Then we may define the type A×B
inductively to be the type with basic constructors

ρ ∶ A→ B→ A×B

The induction principle for A×B becomes that whenever P is a dependent type over
A×B for which there is a function

k ∶∏(a ∶ A)(b ∶ B), P(ρ(a,b)),
then there is a section σ ∶∏(w ∶A×B), P(w) with the property that σ(ρ(a,b)) = k(a,b).
Again, there is similarity between this induction principle and the principle

(ϕ →ψ → χ)→ (ϕ ∧ψ → χ)
to introduce a conjunction on the left. ★
Example 1.2.5. In fact, we have already seen an example of a type defined inductively:
the dependent sum. When P is a dependent type over a type A, the dependent sum∑(a ∶ A), P(a) was defined to have the basic constructor ι ∶∏(a ∶ A), P(a)→ Type
and the induction principle for ∑(a ∶ A), P(a) was that, whenever Q is a dependent
type over ∑(a ∶ A), P(a), to give a section ∏(w ∶∑(a ∶ A), P(a)) , Q(w) it suffices
to define it on the pairs ⟨a,u⟩ of terms a ∶ A and u ∶ P(a). We called this a minimality
principle there, but it was in fact an induction principle. ★

The definition of inductive types is somewhat complicated, but the idea is that one
can define a type inductively by specifying its basic constructors – in the case of the
natural numbers those are zero and S – and a term of the type that asserts that there is a
section of every dependent type over the type we are defining which admits the same
structure of the basic constructors. With some experience it is possible to just guess the
right induction principle for a type when its basic constructors are given.

The important type in this text, the identity types, also have an inductive definition
and we will define many more types inductively. But instead of only considering
functions with codomain A as basic constructors of a type A which we are defining
inductively – this is the normal state of affairs in inductive type theory – we will allow
ourselves basic constructors which specify elements in the identity types as well. This
allows us to state that some elements, while they are obtained in different ways, are
equal. For example, we might want to state that S(S(zero)) is equal to zero and then
we get a ‘two-element set’ instead of the whole set of natural numbers. How to define
types in this way is one of the main themes of this text.

13

2. TYPE THEORY WITH IDENTITY TYPES

We start here our investigation of type theory with identity types. If A is a type and x and
y are terms of that type, then the identity type IdA(x,y) can be thought of as the type that
asserts that x and y are identical terms of A, or terms with equal values. The terms of
IdA(x,y) can then be treated as reasons why x and y are identical. When Per Martin-Löf
invented identity types, the were intended to be a notion of equality, where the type
IdA(x,y) is only inhabited if x = y and that IdA(x,x) has only one term. However, type
theoretical ways to express such a principle (e.g. the principle of Uniqueness of Identity
Proofs) cannot be proved within type theory. Thus we may distinguish between two
flavors of type theory: we have extensional type theory where a principle such as UIP
is assumed, and on the other hand we have intensional type theory without such an
assumption.

Awody, Warren and Voevodsky have taught us that it is fruitful to think of the type
IdA(x,y) as the type of paths from x to y and they left the idea that IdA(x,y) is only
inhabited when x = y. We will see that there will emerge a whole homotopy theory in the
theory of types, just as a consequence of assuming identity types. Moreover, intensional
type theory has been interpreted in the model categories of ω-groupoids, simplicial sets
and many others, where a dependent type over a type became a fibration over a space.
In fact, the groupoid interpretation was the first interpretation of intensional type theory
which had non-trivial paths. This was a noticeable achievement, since it was the first
concrete evidence that the types IdA(x,y) may not be trivial.

Identity types force us to think of types in a different way than as a kind of sets.
Encouraged by the path interpretation of the terms of the identity types, we shall use
the words ‘type’ and ‘space’ interchangeably and the terms of the spaces IdA(x,y) shall
always be called paths. It shall soon become clear that we have the same operations on
paths as we are used to in topology: there is a notion of composition, we can invert paths,
if P is a dependent space over A then paths in A can be lifted to the space∑(a ∶A), P(a)
and if f ∶ A→ B is a function then f acts functorially on the paths of A. Note that the
fact that functions act on paths tells us that all functions in type theory are continuous.

Paths give us the notion of equivalence, a way of saying that two types are the same
that is much less restrictive that a notion of isomorphism one might think of. Indeed,
we will see that any path between types induces an equivalence between those types.
Voevodsky took this a step further by reasoning that the spaces of paths between types
and the spaces of equivalences between types are themselves equivalent. This is his
univalence axiom, which allows us to interchange equivalent spaces in an argument
without any compromises. The univalence axiom has far reaching consequences: one
of the first things Voevodsky did with univalence was showing that he got function
extensionality as a consequence. Univalence has also been used to show that the
fundamental group of the circle, which we will be able to define using identity types, is
the group of integers. Moreover, it has been proven that the univalence axiom holds in
the simplicial set interpretation of intensional type theory.

14

2.1 The inductive definition of identity types
We begin by introducing identity types and the basic notions that follow from them.
For any type A, the identity type IdA is of the type A→ A→Type. Thus, we have types
IdA(x,y) for any x,y ∶ A. One of the earliest interpretations of the types IdA(x,y) is that
of the propositional equality of x and y, i.e. of proofs that x and y are equal terms of
type A. It is convenient, however, to think of inhabitants of IdA(x,y) as paths from x to
y. Like paths, they can be composed, inverted and they can be lifted, referring to the
path lifting property in the theory of fibrations (in topological spaces).

Definition 2.1.1. The identity type IdA ∶ A→ A→Type for a space A is defined induc-
tively with the dependent function

id ∶∏(a ∶ A), IdA(a,a).
as its only basic constructor. The terms ida point to the canonical paths from a to a,
which are the constant paths in the topological interpretation. Note, however, that this
inductive definition is unlike the inductively defined spaces we have seen so far, in the
sense that IdA is a dependent type over A×A. Nevertheless, the induction principle for
IdA is very similar to the induction principles in section 1.2.

The induction principle for identity types says that to define a section for a dependent
type D ∶∏{x,y ∶ A}, IdA(x,y)→Type over IdA, it is enough to give a function d ∶∏(a ∶
A), D(ida). Thus, whenever there are

D ∶∏{x,y ∶ A}, IdA(x,y)→Type

d ∶∏(a ∶ A), D(a,a, ida)
there is a section J(D,d) ∶∏{x,y ∶ A}(p ∶ IdA(x,y)), D(x,y, p) with the property that

J(D,d, ida) = d(a) (conversion rule)

holds for every a ∶ A, stating that J(D,d) extends the function d in the appropriate sense.
As we have indicated by the curly bracket notation, we will usually write J(D,d, p)
instead of J(D,d,x,y, p).

We will call the terms of IdA(x,y) paths and we will denote the type IdA(x,y) by
x↝ y accordingly. Thus, the identity type IdA ∶ A→ A→ Type is also called the path
space of A. ⧫

As a first application of the induction principle for paths, we can use the induction
principle for identity types to invert terms of type x↝ y to obtain terms of y↝ x.

Lemma 2.1.2. For every type A and every two terms x,y ∶ A there is a function

inv ∶ (x↝ y)→ (x↝ y)
with the property that inv(idx) = idx for each x ∶ A. We will usually denote inv(p) by
p−1.

15

PROOF. Let D ∶∏(x,y ∶ A), (x↝ y)→ Type be the dependent type over IdA given by
D(x,y, p) ∶= y↝ x. Then we have the term

d ∶= λx.idx ∶∏(x ∶ A), D(x,x, idx)
and hence J gives us a term J(D,d,x,y, p) ∶ y ↝ x for each p ∶ x ↝ y. Thus, inv ∶=
J(D,d,x,y) is a function from x↝ y to y↝ x. The conversion rule gives the equality
inv(idx) = idx.

Similarly, we may use the induction principle to compose paths:

Lemma 2.1.3. For every type A and every three terms x,y,z ∶ A there is a function

−●− ∶ (y↝ z)→ (x↝ y)→ (x↝ z)
giving the composition q● p ∶ x↝ z for any pair of paths q ∶ y↝ z and p ∶ x↝ y. This
composition satisfies idy ○ p = p for each p ∶ x↝ y.

PROOF. Let D be the dependent type over IdA given by

D(y,z,q) ∶= (x↝ y)→ (x↝ z).
Then we have the dependent function

d ∶= λy.idmapx↝y ∶∏(y ∶ A), D(y,y, idy),
where idmapx↝y is the identity function on x↝ y defined by λ p.p. Now we may apply
the induction principle for identity types to conclude that there is a term J(D,d,q) ∶ (x↝
y)→ (x↝ z) for every path q ∶ y↝ z in A giving composition. The equality idy ○ p = p
follows from the conversion rule.

The following lemma describes the basic behavior of the operations of inversion and
composition, justifying the nomenclature. A noteworthy distinction with the behavior
of inversion and composition in a category is that they are up to paths one level higher,
i.e. paths of paths. Indeed, the types x↝ y have path spaces of their own and we use
these to show that the usual familiar properties hold for inversion and composition, with
equalities replaced by paths.

Lemma 2.1.4 (The ω-groupoid structure of types). Suppose A and B are types,
that x,y,z,a ∶ A and that p ∶ x↝ y, q ∶ y↝ z and r ∶ z↝ a. We have the following:

i. There exists a paths reflRight ∶ p↝ p● idx.

ii. There are paths invLeft ∶ p−1 ● p↝ idx and invRight ∶ p● p−1↝ idy.

iii. There is a path invTwice ∶ (p−1)−1↝ p.

iv. There is a path assoc ∶ r ●(q● p)↝ (r ●q)● p.

PROOF. All the proofs use the induction principle for paths.

16

i. Let D be the dependent type over IdA given by

D(x,y, p) ∶= p↝ p● idx.

Then D(x,x, idx) is the space idx ↝ idx ● idx. Since idx ● idx = idx, it follows that
D(x,x, idx) = idx↝ idx. Thus, there is a term

d ∶= λx.ididx ∶∏(x ∶ A), D(x,x, idx).
Now J gives a term J(D,d, p) ∶ p↝ p● idx for each path p ∶ x↝ y in A.

ii. Let D be the dependent type over IdA given by

D(x,y, p) ∶= p−1 ● p↝ idx.

Then D(x,x, idx) is the space idx
−1● idx↝ idx. Since idx

−1 = idx and since idx● idx =
idx, we get that D(x,x, idx) = idx↝ idx. Hence we find the term

d ∶= λx.ididx ∶∏(x ∶ A), D(x,x, idx).
Now J gives a term J(D,d, p) ∶ p−1 ● p↝ idx for each path p ∶ x↝ y in A. A path
from p● p−1↝ idy is found using a similar argument.

iii. Let D be the dependent type over IdA given by

D(x,y, p) ∶= (p−1)−1↝ p.

Then D(x,x, idx) is the space (idx
−1)−1↝ idx. Since idx

−1 = idx for each x ∶ A, we
see that D(x,x, idx) = idx↝ idx. Hence we find the term

d ∶= λx.ididx ∶∏(x ∶ A), D(x,x, idx).
Now J gives a term J(D,d, p) ∶ (p−1)−1↝ p for each p ∶ x↝ y in A.

iv. Let D be the dependent type over IdA given by

D(z,a,r) ∶=∏(x,y ∶ A)(p ∶ x↝ y)(q ∶ y↝ z), r ●(q● p)↝ (r ●q)● p.

Then D(z,z, idz) is the space

∏{x,y ∶ A}(q ∶ y↝ z)(p ∶ x↝ y), idz ●(q● p)↝ (idz ●q)● p,

which simplifies to

∏{x,y ∶ A}(q ∶ y↝ z)(p ∶ x↝ y), q● p↝ q● p.

Therefore, we find the term

d ∶= λ z.λx,y, p,q.idq●p ∶∏(z ∶ A), D(z,z, idz)
Now J gives us a term J(D,d,r,q, p) ∶ r●(q● p)↝ (r●q)● p for each path r ∶ z↝ a
in A.

17

The analogy with paths in topological spaces is very strong. Also in a topological
space paths can be composed and inverted. But composing a path with it’s own inverse
only gives a constant path up to homotopy, i.e. up to a higher path. Here, the constant
paths in a topological space play the role of the identity paths in a type. Likewise,
associativity holds only up to homotopy. Our intuition with paths in type theory relies
very much on these ideas.

Now we wish to establish that functions f ∶ A→ B behave functorial. More precisely,
that functions carry paths from their domain to their codomain. Another way of viewing
this is that every function in type theory is continuous.

Lemma 2.1.5. Suppose that f ∶ A→ B is a function and that p ∶ x↝ y is a path in A.
Then there is a path

f ′(p) ∶ f (x)↝ f (y)
in B. Moreover, for each x ∶ A we have f ′(idx) = id f(x).

PROOF. Let D be the dependent type over IdA given by D(x,y, p) ∶= f (x)↝ f (y). Then
we have the term

d ∶= λx.id f(x) ∶∏(x ∶ A), D(x,x, idx).
Now J gives us a path f ′(p) ∶= J(D,d, p) ∶ f (x)↝ f (y) in B for each path p ∶ x↝ y in
A. The conversion rule gives that f ′(idx) = id f(x) for each x ∶ A.

The ′ in our notation indicates that this is a non-dependent version of something
which also has a dependent version, but usually we will not denote the ′. In lemma 2.1.7
we will see how dependent function f ∶∏(x ∶ A), P(x) acts on paths. To get there, we
need another property of paths which is of primary interest of itself.

Lemma 2.1.6 (Transport). Suppose that P is a dependent type over A and that
p ∶ x↝ y is a path in A. Then there is a function transport(p) ∶ P(x)→ P(y). For
simplicity, we denote the term transport(p)(u) ∶ P(y) by p ⋅u, for terms u ∶ P(x).

PROOF. The dependent type D ∶ ∏(x,y ∶ A), IdA(x,y) → Type we take is given by
D(x,y, p) ∶= P(x)→ P(y). Then we have the function

d ∶= λx.idP(x) ∶∏(x ∶ A), D(x,x, idx),
so the induction principle for identity types gives us terms J(D,d, p) ∶ P(x)→ P(y) for
p ∶ x↝ y, which we define to be our transport(p).

Another view on the transportation lemma is via propositional equality. Recall that
a dependent type P over a type A can be seen as a property, varying over the terms
of A. The property P holds for x in A if P(x) is inhabited. Then the transportation
lemma says that if x is propositionally equal to y, then P(x) is inhabited if and only if
P(y) is inhabited. In the section about equivalences we will see that P(x) and P(y) are
equivalent types if x and y are propositionally equal.

Lemma 2.1.7 (Dependent map). Suppose that f ∶∏(x ∶A), P(x) and that p ∶ x↝ y
is a path in A. Then there is a path f (p) ∶ p ⋅ f (x)↝ f (y) in P(y).

18

PROOF. Let D be the dependent type over IdA given by

D(x,y, p) ∶= p ⋅ f (x)↝ f (y).
Then D(x,x, idx) is the space idx ⋅ f (x)↝ f (x). Since idx ⋅ f (x) = f (x), we get that
D(x,x, idx) = f (x)↝ f (x). Thus, we find the term

d ∶= λx.id f(x) ∶∏(x ∶ A), D(x,x, idx)
and now J gives us a path J(D,d, p) ∶ p ⋅ f (x)↝ f (y) for each path p ∶ x↝ y in A.

In the following lemma we prove that if P ∶ A→ Type is a dependent type over
A, then paths p ∶ x↝ y lift to paths in the total space ∑(x ∶ A), P(x). In other words,
dependent types have the path lifting property. This means that we can think of a total
space ∑(x ∶ A), P(x) as a fibered space over the space A, with the first projection being
the fibration. The space P(x) is then the fiber of ∑(x ∶ A), P(x) above x.

Lemma 2.1.8 (Path lifting property). Suppose that P is a dependent type over A,
that p ∶ x↝ y is a path in A and that u ∶ P(x). Then there is a path

pΣ(u) ∶ ⟨x,u⟩↝ ⟨y, p ⋅u⟩
in the total space ∑(x ∶ A), P(x) of P.

PROOF. Let the dependent type D over IdA be given by

D(x,y, p) ∶=∏(u ∶ P(x)), ⟨x,u⟩↝ ⟨y, p ⋅u⟩.
Since idx ⋅u = u for all u ∶ P(x) it follows that D(x,x, idx) = ⟨x,u⟩↝ ⟨x,u⟩, and hence we
have the dependent function

d ∶= λx.λu.id⟨x,u⟩ ∶∏(x ∶ A), D(x,x, idx).
The induction principle for identity types now gives us that there is a path ⟨x,u⟩↝⟨y, p ⋅u⟩ in∑(x ∶A), P(x) for each path p ∶ x↝ y in A, which we define to be our pΣ(u).

The path lifting property may be used to find a path ⟨x, f (x)⟩↝ ⟨y, f (y)⟩ in ∑(x ∶
A), P(x) for every section f of P.

Corollary 2.1.9. If f ∶∏(x ∶ A), P(x) is a section of P and p ∶ x↝ y is a path in A,
then there is a path from ⟨x, f (x)⟩ to ⟨y, f (y)⟩ in the total space ∑(x ∶ A), P(x).

PROOF. By the path lifting property, we have a path

pΣ(f (x)) ∶ ⟨x, f (x)⟩↝ ⟨y, p ⋅ f (x)⟩
for each path p ∶ x↝ y in A. Therefore, it suffices to find a path ⟨y, p ⋅ f (x)⟩↝ ⟨y, f (y)⟩.
Recall from the dependent map lemma that we already have a path f (p) ∶ p ⋅ f (x)↝ f (y)
in P(y). Now note that the function

⟨y,−⟩ ∶ P(y)→∑(x ∶ A), P(x)

19

also acts on paths, i.e. we have a path ⟨y, f (p)⟩ ∶ ⟨y, p ⋅ f (x)⟩↝ ⟨y, f (y)⟩ in the total
space ∑(x ∶ A), P(x).

In the last part of this first section about identity types we will show how we can use
identity types to define functions

proj1 ∶ (∑(x ∶ A), P(x))→ A

proj2 ∶∏(w ∶∑(x ∶ A), P(x)), P(proj1(w)).
for each dependent type P over a type A. Moreover, there is a path

⟨proj1w,proj2w⟩↝w

for each w ∶∑(x ∶ A), P(x).

Lemma 2.1.10. Suppose that P is a dependent space over a space A. Then for every
element w of ∑(x ∶ A), P(x) there exists a term x ∶ A and a term u ∶ P(x) for which
there is a path from w to ⟨x,u⟩. We denote x by proj1w and we denote u by proj2w.

PROOF. Consider the dependent type Q over ∑(a ∶ A), P(a) given by

Q(w) =∑(a ∶ A)(u ∶ P(a)), w↝ ⟨a,u⟩
and define the dependent function K ∶∏(a ∶ A)(u ∶ P(a)), Q(⟨a,u⟩) to be given by

λa,u.⟨a,u, id⟨a,u⟩⟩.
The induction principle for ∑(a ∶ A), P(a) then gives us a section of Q, which proves
the lemma.

Note that the conversion rule for the induction principle for dependent sums gives
that proj1⟨x,u⟩ = x and that proj2⟨x,u⟩ = u for each x ∶ A and u ∶ P(x).

In this section we have given all the proofs with path induction in full detail. Since
proofs with path induction are usually straight forward, future proofs will be given by
only indicating that the proof is by path induction.

2.2 More properties of paths
In this section we investigate more properties of paths, of the transport function and of
dependent maps. The lemmas listed here will be used to prove assertions later on, and
as such this section is here mainly for reference. They are mostly about interactions of
transportation and (dependent) functions with composition and inversion. We will also
cover some basic properties of higher paths. The only new definition in this section,
which will be used extensively in this paper, is that of a commutative square of paths.

20

2.2.1 Preservation of composition

We now present a series of lemmas about how transportation and dependent functions
interact with composition.

Lemma 2.2.1. Suppose that P is a dependent type over A. For every two paths
p ∶ x↝ y and q ∶ y↝ z in A there is a function

tc(q, p) ∶∏(u ∶ P(x)), (q● p) ⋅u↝ q ⋅(p ⋅u),
asserting that (q● p) ⋅u and q ⋅(p ⋅u) are propositionally equal for every u ∶ P(x).

PROOF. Let the dependent type D over IdA be given by

D(y,z,q) ∶=∏(x ∶ A)(p ∶ x↝ y)(u ∶ P(x)), (q● p) ⋅u↝ q ⋅(p ⋅u).
To apply path induction, we need to find a term of type D(y,y, idy) for each y ∶ A. Note
that we have idy ⋅(p ⋅u) = p ⋅u and we have that idy ● p = p. Therefore, we have that

D(y,y, idy) =∏(x ∶ A)(p ∶ x↝ y)(u ∶ P(x)), p ⋅u↝ p ⋅u,
which is inhabited by the function

d ∶= λy.λx, p,u.idp⋅u
Now, the induction principle for paths gives us a term tc(q) of D(y,z,q) for each path
q ∶ y↝ z in A.

Definition 2.2.2. Suppose that in a type A, we have paths as indicated in the diagram

v y

x u

p

q

r

s

We say that the above diagram commutes if there is a path q● p↝ s●r in the space x↝ y.
A path h ∶ q● p↝ s● r is called a witness of the commutativity of the diagram. Likewise,
we may speak of a commutative triangle or a commutative diagram. In this text, a
commutative diagram is always understood to commute up to propositional equality,
unless stated otherwise. ⧫

Lemma 2.2.3. Suppose that P is a dependent type over A and that p ∶ x↝ y and

21

q ∶ y↝ z are paths in A. Then the square

⟨y, p ⋅u⟩ ⟨z,q ⋅(p ⋅u)⟩

⟨x,u⟩ ⟨z,(q● p) ⋅u⟩(q● p)Σ(u)

⟨z,tc(q, p,u)⟩pΣ(u)

qΣ(p ⋅u)

of paths in the total space ∑(x ∶ A), P(x) commutes for every u ∶ P(x).

PROOF. Let D be the dependent type over IdA, with D(y,z,q) defined by

∏(x ∶ A)(p ∶ x↝ y)(u ∶ P(x)), qΣ(p ⋅u)● pΣ(u)↝ ⟨z,tc(p,q,u)⟩●(q● p)Σ(u)
For the identity path idy on y, we have that tc(p, idy,u) = idp⋅u and we have that idyΣ(p ⋅
u) = id⟨y,p⋅u⟩. Also, note that ⟨y, idp⋅u⟩ = id⟨y,p⋅u. So D(y,y, idy) is the space

∏(x ∶ A)(p ∶ x↝ y)(u ∶ P(x)), pΣ(u)↝ pΣ(u),
which is inhabited by the function λx, p,u.idpΣ(u). Thus we may conclude with the path
induction principle that the asserted square commutes.

Lemma 2.2.4. Suppose that P is a dependent type over A and that f ∶∏(x ∶A), P(x)
is a section of P. Then the square

f (z) q ⋅ f (y)

(q● p) ⋅ f (x) q ⋅(p ⋅ f (x))
f(q● p)

tc(q, p, f(x))

q ⋅ f(p)

f(q)

of paths in P(z) commutes. Here q ⋅ f (p) denotes that the function transport(q) ∶
P(y)→ P(z) is applied to the path f (p).

PROOF. We will give the induction argument in a different way this time. Filling in idy
for q in the above diagram, we get that

f (y) idy ⋅ f (y)

(idy ● p) ⋅ f (x) idy ⋅(p ⋅ f (x))
f(idy ● p)

tc(idy, p, f(x))

idy ⋅ f(p)

f(idy)

Converting all the terms involving idy, we see that we have to provide a path from f (p)
to f (p), which we take to be id f(p).

22

2.2.2 Preservation of inversion

Note the symmetry in the situation of the following lemma. This means that the function
we assert to exist, exists in both directions.

Lemma 2.2.5. Suppose that P is a dependent type over A. For every path p ∶ x↝ y
there is a function

mvTransp(p) ∶∏{u ∶ P(x)}{v ∶ P(y)}, (p ⋅u↝ v)→ (u↝ p−1 ⋅v).
PROOF. Immediate with path induction over p.

In fact, we can show that instead of the function space (p ⋅u↝ v)→ (u↝ p−1 ⋅v)
we can take a path space. In section 2.4 we will then be able to show that p ⋅u↝ v and
u↝ p−1 ⋅v are equivalent spaces.

Lemma 2.2.6. Suppose that P is a dependent type over A. For every path p ∶ x↝ y
there is a function

∏(u ∶ P(x))(v ∶ P(y)), (p ⋅u↝ v)↝ (u↝ p−1 ⋅v).
PROOF. Immediate with path induction over p.

In the following lemma we provide a way to compute f (p−1) in terms of f (p).

Lemma 2.2.7. For every section f of a dependent space P over a space A and every
path p ∶ x↝ y in A, there is a path

f (p−1)↝mvTransp(p, f (p))−1.

PROOF. Immediate with induction on p.

2.2.3 The dependent type Y(a)
We introduce there the dependent type Y(a) over A, which will play the key role in
section 2.8 about a type theoretical Yoneda lemma. Here we will use it to show a
property of paths which will eventually enable us to prove contractibility of the spaces∑(x ∶ A), x↝ a for each a ∶ A and of the interval, which we define in chapter 3.

Definition 2.2.8. Suppose that A is a type and that a ∶ A. Define the dependent type
Y(a) over A by

Y(a)(x) ∶= x↝ a

for each x ∶ A. ⧫
Lemma 2.2.9. For any path p ∶ x↝ y in a space A there is a path from p ⋅ p to idy,
where the transportation is taken with respect to Y(y).

23

PROOF. For a path p ∶ x↝ y let D(x,y, p) be the space

transport(P, p, p)↝ idy

Then D(y,y, idy) is the space idy↝ idy, which contains the canonical term d(y) = ididy .
Thus by the induction principle for identity types, there is a path from p ⋅ p to idy for any
path p of A.

This lemma has a converse. Take Y!(a) to be the dependent type over A given by
Y!(a)(x) ∶= a↝ x.

Lemma 2.2.10. For any path p ∶ x↝ y in A there is a path from p−1 ⋅ p to idx, where
the transportation is taken with respect to Y!(x).

2.2.4 Higher paths

Lemma 2.2.11. Suppose that P is a dependent type over a type A. If p,q ∶ x↝ y are
paths in A and if s ∶ p↝ q is a path in the space x↝ y then there exists, for every
u ∈ P(x), a path s ⋅u ∶ p ⋅u↝ q ⋅u in P(b).

PROOF. Let D(p,q,s) be the space ∏(u ∶ P(x)), p ⋅u↝ q ⋅u. Then we have, for each
path p ∶ x↝ y, that D(p, p, idp) =∏(u ∶ P(x)), p ⋅u↝ p ⋅u has the term

d(p) ∶= λu.idp⋅u
and hence the induction principle for paths gives us a path s ⋅u ∶ p ⋅u↝ q ⋅u for each
s ∶ p↝ q.

Lemma 2.2.12. Suppose that p,q ∶ x↝ y are paths in a type A and that s ∶ p↝ q is
a path in x↝ y. Then we have, for any path h ∶w↝ x in A, a path s●−h ∶ p●h↝ q●h
and we have for any path k ∶ y↝ z a path k−● s ∶ k● p↝ k●q.

PROOF. The two assertions are clearly similar, so we only prove the existence of
s●−h ∶ p●h↝ q●h. Let D be the dependent type over IdA given by

D(p,q,s) ∶=∏(w ∶ A)(h ∶w↝ x), p●h↝ q●h.

Then D(p, p, idp) has the term λw.h.idp●h, so the induction principle for paths gives us
a term of type D(p,q,s) for each path s ∶ p↝ q in the space x↝ y.

Lemma 2.2.13. Suppose that p,q ∶ x↝ y are paths in A. Then for every path s ∶ p↝ q
there is a path s[−1] ∶ p−1↝ q−1.

PROOF. Immediate with induction on s.

24

2.2.5 Paths and dependent sums

The following lemma is of crucial importance. It shows what is needed to construct a
path in a total space.

Lemma 2.2.14. Suppose P is a dependent space over A. To give a path from ⟨x,u⟩
to ⟨y,v⟩ in the total space∑(x ∶ A), P(x) of P it suffices to give a path γ0 ∶ x↝ y in A
and a path γ1 ∶ γ0 ⋅u↝ v in P(b). Thus, we get a function of type

∏(x,y ∶ A)(u ∶ P(x))(v ∶ P(y))(p ∶ x↝ y), (p ⋅u↝ v)→ (⟨x,u⟩↝ ⟨y,v⟩).
PROOF. Suppose that γ0 ∶ x↝ y and that γ1 ∶ γ0 ⋅u↝ v. Then ⟨b,γ1⟩●γ0Σ is a path from⟨x,u⟩ to ⟨y,v⟩. Recall that γ0Σ is obtained with the total path lemma 2.1.8.

Lemma 2.2.15. Suppose that P is a dependent space over A and that γ ∶w↝w′ is
a path in the total space ∑(x ∶ A), P(x) of P. Then there are paths

γ0 ∶ proj1w↝ proj1w′
γ1 ∶ γ0 ⋅proj2w↝ proj2w′.

PROOF. We can take γ0 ∶= proj1 γ . The path γ1 is found with path induction over γ .

Lemma 2.2.16. Suppose that A is a type, P ∶ A→ Type is a dependent type over
A and that Q ∶∏(x ∶ A), P(a)→ Type is a dependent type over P. Then any path
p ∶ x↝ y in A induces a dependent function∏(u ∶ P(x)), Q(x,u)→Q(y, p ⋅u).

PROOF. This is immediate with induction on p.

The following lemma shows how to compute the transport when the dependent
space is itself a dependent sum:

Lemma 2.2.17. Suppose that B ∶ A→ Type is a dependent type over A and that
Q ∶ (∑(x ∶ A), B(x))→Type is a dependent type over ∑(x ∶ A), B(x) and let P be
the dependent type over A given by

P(x) ∶=∑(v ∶ B(x)), Q(x,v).
Then for any path p ∶ x↝ y and any ⟨v,q⟩ ∶ P(x) there is a path

p ⋅ ⟨v,q⟩↝ ⟨p ⋅v, pΣ(v) ⋅q⟩,
where the transportation in p ⋅v is taken with respect to B and where pΣ(v) ∶ ⟨x,v⟩↝⟨y, p ⋅v⟩ is the path in ∑(x ∶ A), B(x) above p given by the path lifting property.

PROOF. Immediate with induction on p.

The above lemma also has a version where B is non-dependent.

25

Lemma 2.2.18. Let A, B, Q and P be as in the previous lemma. When B is constant
there is, for any path p ∶ x↝ y and any ⟨v,q⟩ ∶ P(x), a path

p ⋅ ⟨v,q⟩↝ ⟨v, p ⋅q⟩,
where the transport in p ⋅q is taken with respect to the dependent type λx.Q(x,v)
over A.

PROOF. The claim follows with induction on p.

2.3 Homotopy type theory
In this section we will introduce ideas from homotopy theory to type theory with
identity types. The basic notions of homotopy, contractibility and homotopy fiber will
be introduced here. These notions are fundamental in the understanding of equivalences.
To help explaining the definition of homotopy we give below, we also take a brief look
at naive function extensionality. We will not assume any form of function extensionality
in this section, unless we are explicit about it.

2.3.1 Homotopies

Lemma 2.3.1. Suppose that f ,g ∶∏(x ∶ A), P(x) are sections of a dependent space
P over A and let α ∶ f ↝ g. Then α determines paths α(x) ∶ f (x)↝ g(x) for each
x ∶ A and the square

f (y) g(y)

p ⋅ f (x) p ⋅g(x)
f(p)

α(y)

(p ⋅α(x))−1

g(p)

commutes.

PROOF. Both parts of the assertion follow with induction on α .

The previous lemma gives a dependent function of type

(f ↝ g)→∏(x ∶ A), f (x)↝ g(x)
for any f ,g ∶∏(x ∶ A), P(x). Thus, the type∏(x ∶ A), f (x)↝ g(x) is a weaker notion
than the type f ↝ g. The naive function extensionality principle is a function in the
other direction.

Definition 2.3.2. The naive function extensionality principle is that there is a function

(∏(x ∶ A), f (x)↝ g(x))→ (f ↝ g)
for any pair f ,g of sections of a dependent type P over A. ⧫

26

Definition 2.3.3. Two sections f and g of a dependent type P over a type A are said to
be homotopic if there is an element H of type

∏(x ∶ A), f (x)↝ g(x).
In that case, H is said to be a homotopy from f to g. We denote the space of homotopies
from f to g by f ∼ g. ⧫

The reader might have expected that a homotopy between to functions f and g
would be defined as a path from f to g, and not merely a choice of paths f (x)↝ g(x)
for every x ∶ A. After all, the latter would not quite suffice in classical homotopy theory.
But the reason that this would not suffice in classical homotopy theory is that the choice
of paths f (x)↝ g(x) could be made in a discontinuous way. This would not be possible
in any interpretation of intensional type theory into topology, because we know from
the dependent map lemma that functions act on paths as well, which is a form of
continuity. This vaguely indicates that our definition of homotopies might indeed be
sensible. The real reason that this is a sensible definition is that the models we have in
mind (mainly the model of simplicial sets) satisfy the function extensionality principle
we have stated above (even in a stronger form, but we will come to that later). With
function extensionality, homotopies induce (and come from) paths, which brings us
back to our original intuition of what a homotopy should be. We will postpone a detailed
discussion on functional extensionality to section 2.5.

Definition 2.3.4. Lemma 2.3.1 gives a function

hApply ∶∏{A ∶Type}{P ∶ A→Type}(f ,g ∶∏(x ∶ A), P(x)), (f ↝ g)→ (f ∼ g). ⧫
There is also a variant of the commutativity of the square in lemma 2.3.1.

Lemma 2.3.5. Suppose that H ∶ f ∼ g is a homotopy for two sections f ,g ∶∏(x ∶
A), P(x) of a dependent type P over A. The square

f (y) g(y)

p ⋅ f (x) p ⋅ f (y)

H(y)

f(p)

(p ⋅H(x))−1

g(p)

commutes for each path p ∶ x↝ y in A.

PROOF. Immediate with induction on p.

Definition 2.3.6. If H is a homotopy from f to g and if K is a homotopy from g to h,
then we define the homotopy K ●H by

K ●H(x) ∶=K(x)●H(x).
For every function f there is an identity homotopy id f and any homotopy H has an
inverse H−1 defined pointwise by H−1(x) ∶=H(x)−1. ⧫

27

Note that even though we have not described equivalence relations in type theory
yet, it is intuitively clear that being homotopic is an equivalence relation on the type∏(x ∶ A), P(x) of sections of P.

So far we have considered the most general case where f and g are sections of
a dependent type P over A. Homotopies between non-dependent functions are just a
special case of homotopies between dependent functions. Besides the composition ●
which we have described above, homotopies of non-dependent functions may also be
composed horizontally.

Definition 2.3.7. Suppose that f ,g ∶ A→ B and f ′,g′ ∶ B→C are non-dependent func-
tions. If H ∶ f ∼ g and H′ ∶ f ′ ∼ g′ are homotopies, we may compose H with H′ horizon-
tally by defining

H ○H′ ∶= λa.g′(H(a))●H′(f (a)).
Thus, being homotopic is a congruence relation for non-dependent functions. ⧫
Remark 2.3.8. Notice that we could also have defined H ○H′ to be the function

λa.H′(g(a))● f ′(H(a)).
This composition is not propositionally equal to the original horizontal composition, but
rather homotopic to it. ★

The following lemma is a non-dependent version of lemma 2.3.5.

Lemma 2.3.9. Suppose that H ∶ f ∼ g is a homotopy between functions f ,g ∶ A→ B.
Then the square

f (y) g(y)

f (x) g(x)
f(p)

H(y)

H(x)

g(p)

commutes for every path p ∶ x↝ y in A.

PROOF. Immediate with induction on p.

Definition 2.3.10. A function f ∶ A→ B is said to be a homotopy isomorphism if there
exists a function g ∶ B→ A with the property that idA ∼ g○ f and f ○g ∼ idB. In this case
g is said to be an inverse for f . The space iso(A,B) of homotopy isomorphisms from A
to B is the space

∑(f ∶ A→ B)(g ∶ B→ A), (idA ∼ g○ f)×(f ○g ∼ idB). ⧫
Lemma 2.3.11. Any two inverses of a function f ∶ A→ B are homotopic.

28

PROOF. Suppose that ⟨ f ,g,H,K⟩ and ⟨ f ,g′,H′,K′⟩ are elements of iso(A,B) and let
b ∶ B. Then K(b) ∶ f (g(b))↝ b and K′(b) ∶ f (g′(b))↝ b. Thus we may apply g to the
path K′(b)−1 ●K(b), from which we get a path g(b)↝ g′(b) as the composition

g(b) g(f (g(b))) g(f (g′(b))) g′(b)H(g(b)) g(K′(b)−1 ●K(b)) H(g′(b))−1

This shows that g and g′ are homotopic.

Lemma 2.3.12. A function is an isomorphism whenever it is homotopic to an iso-
morphism.

PROOF. This follows directly from the operations defined in definition 2.3.7.

Lemma 2.3.13. Suppose that ⟨ f ,g,H,K⟩ is a term of type iso(A,B). Then H and
K are related via the squares

f (a) b

f (g(f (a))) f (g(b))

p

f(H(a))

f(g(p))

K(b)

which commute for every a ∶ A and p ∶ f (a)↝ b.

2.3.2 Contractible spaces

Definition 2.3.14. A space A is said to be contractible if the space

isContr(A) ∶=∑(a ∶ A)∏(x ∶ A), x↝ a

is inhabited. A pair ⟨a, λx.p(x)⟩ is then called a witness of the contractibility of A. If⟨a, λx.p(x)⟩ is a witness of the contractibility of A, then a is said to be the center of
contraction. ⧫

Thus, a space A is contractible if there is an element a ∶ A and a homotopy from λx.x
to λx.a. Note that contractible spaces are always non-empty.

Again, we should remark that in classical homotopy theory, the notion ‘there exists
an element a ∈ A such that for every x ∈ A there is a path from x to a’ is not a notion
of contractibility. For instance, the circle has this property. Rather, the notion of
contractibility is that there exists a point a ∈ A such that the identity map on A is
homotopic to the constant map sending every element to a, which is also the correct
interpretation of the type theoretical notion of contractibility we have presented above.

Lemma 2.3.15. The type unit is contractible.

29

PROOF. We prove this with induction. Let P be the dependent type over unit given
by P(x) = x↝ tt. Then idtt ∶ P(tt), so the induction principle for unit gives a section
f ∶∏(x ∶ unit), P(x). Hence the pair ⟨tt, f ⟩ is a term of type isContr(unit).

Lemma 2.3.16. For any space A and any a ∶ A, the space ∑(x ∶ A), x↝ a is con-
tractible.

PROOF. Note that whenever p ∶ x↝ a it holds that that p ⋅ p↝ ida by lemma 2.2.9, so
lemma 2.2.14 gives us the desired result.

Lemma 2.3.17. Suppose that A is a space with the property that x↝ y is contractible
for each x,y ∶ A. Then we have

A→ isContr(A).
PROOF. Suppose that

ϕ ∶∏(x,y ∶ A), isContr(x↝ y)
and that a ∶ A. Then λx.proj1ϕ(x,a) is a term of isContr(A).

2.3.3 Homotopy fibers

The following defines the ‘inverse image’ for a function f ∶ A→ B.

Definition 2.3.18. Suppose f ∶ A→ B is a function from A to B. The homotopy fiber of
a point b ∶ B, denoted by hFiber(f ,b), is the space

∑(a ∶ A), f (a)↝ b.

Note that hFiber(f ,b) is exactly the total space of the dependent type P(a) = f (a)↝ b
over A. ⧫
Definition 2.3.19. A function f ∶ A→ B is said to be essentially surjective if there exists
a dependent function of type

∏(b ∶ B), hFiber(f ,b)
and f is said to be essentially injective if there exists a dependent function of type

∏(x,y ∶ A), (f (x)↝ f (y))→ (x↝ y). ⧫
Lemma 2.3.20. Suppose that f ∶ A→ B is a function and that b ∶ B. Then for any
path α ∶ ⟨x, p⟩↝ ⟨y,q⟩ in hFiber(f ,b) there is a commuting triangle

f (y)f (x)

b

f(α0)

p q

(1)

30

of paths in B, where α0 ∶ x↝ y is the base path of α . Conversely, to give a path⟨x, p⟩↝ ⟨y,q⟩ in hFiber(f ,b) it suffices to find a path α0 ∶ x↝ y such that the triangle
in (1) commutes.

PROOF. Note that α0 = idx0 if α = id⟨x,p⟩, so the the commutativity of the triangle in (1)
follows immediately from an application of induction on α .

For the converse we will first show that for any path α0 ∶ x ↝ y in A and any
p ∶ f (x)↝ b in B there is a path from α0 ⋅ p to p● f (α0)−1. Let D(x,y,α0) be the type

∏(b ∶ B)(p ∶ f (x)↝ b), α0 ⋅ p↝ p● f (α0)−1,

where the transportation is taken with respect to the dependent type P(x) = f (x)↝ b.
Then D(x,x, idx) contains the canonical term λ(b, p)↝ reflRight(p). Thus, by the
induction principle for paths it follows that there is a path from α0 ⋅ p to p● f (α0)−1 for
every α0 ∶ x↝ y and p ∶ f (x)↝ b.

To find a path from ⟨x, p⟩ to ⟨y,q⟩ it suffices to find a path from α0 ∶ x↝ y in A
and a path α1 ∶ α0 ⋅ p↝ q in the space f (y)↝ b. Since there is a path from α0 ⋅ p to
p● f (α0)−1), it suffices to find a path from p● f (α0)−1 to q, which we get from the
commutativity of (1).

Lemma 2.3.21. Lemma 2.3.20 determines for each f ∶ A→ B, b ∶ B, x,y ∶ A and
u ∶ f (x)↝ b and v ∶ f (y)↝ v, a function

ϕ ∶ (∑(p ∶ x↝ y), v● f (p)↝ u)→ ⟨x,u⟩↝ ⟨y,v⟩.
To find a path from ϕ(p,q) to ϕ(p′,q′), where p, p′ ∶ x↝ y, q ∶ v● f (p)↝ u and q′ ∶ v●
f (p′)↝ v, it suffices to find a path µ0 ∶ p↝ p′ and a path µ1 ∶ q●(v−● f (µ0)−1)↝ q′.

PROOF. For this, we only need to show that there is a path from q●(v−● f (µ0)−1) to
µ0 ⋅q. This is immediate with induction on µ0.

Lemma 2.3.22. Suppose that f ∶A→B is a function, that q ∶ b↝ b′ is a path in B and
that ⟨a, p⟩ ∶ hFiber(f ,b). Then q ⋅ ⟨a, p⟩↝ ⟨a,q● p⟩. In particular, p ⋅ ⟨a, id f(a)⟩↝⟨a, p⟩.

PROOF. Immediate with induction on q.

2.4 Equivalences
With the homotopy fiber, we are able to define equivalences of types.

2.4.1 Definition and first applications of equivalences

Definition 2.4.1. A function f ∶A→B is said to be an equivalence if the homotopy fiber
hFiber(f ,b) is contractible for every b ∶ B. Thus, f ∶ A→ B is an equivalence if there is
a term of type

isEquiv(f) ∶=∏(b ∶ B), isContr(hFiber(f ,b))
Two spaces A and B are said to be equivalent if the space ∑(f ∶ A→ B), isEquiv(f) is
inhabited; we denote this type by equiv(A,B) or just by A ≃ B. ⧫

31

Lemma 2.4.2. The identity map idA ∶ A→ A is always an equivalence.

PROOF. We have to show that hFiber(idA,a), which is the total space of the dependent
type λx.(x↝ a) over A, is contractible for every element a ∶ A. If p ∶ x↝ a is a path in A,
then the total path pΣ(p) goes from ⟨x, p⟩ to ⟨a, p ⋅ p⟩. By lemma 2.2.9 there is a path
from p ⋅ p to ida in the type a↝ a. The composition of these yields a path from ⟨x, p⟩ to⟨a, ida⟩, which shows that hFiber(idA,a) is contractible for each a ∶ A.

Corollary 2.4.3. Suppose P is a dependent type over A and that p ∶ x↝ y is a path
in A. Then transportation along p is an equivalence from P(x) to P(y).

PROOF. Let D(x,y, p) be the type isEquiv(transport(P, p)). By lemma 2.4.2, the space
D(x,x, idx) is inhabited since the identity map idP(x) ∶ P(x)→ P(x) is an equivalence for
all x ∶ A. Thus, the induction principle for identity types gives us a term of D(x,y, p) for
any p ∶ x↝ y in A, which shows that transport(P, p) is an equivalence for any path p.

Lemma 2.4.4. A space is contractible whenever it is equivalent to a contractible
space.

PROOF. Suppose that f ∶ A→ B is an equivalence and that

E ∶∏(b ∶ B), isContr(hFiber(f ,b))
and suppose that B is contractible with β ∶∑(b ∶ B)∏(y ∶ B), y↝ b. We have seen
that the pair ⟨ f ,E⟩ induces an equivalence ⟨ f −1,E−1⟩ from B to A. Thus, to show
that A is contractible it suffices to find a dependent function of type ∏(x ∶ A), x↝
f −1(proj1(β)). Note that the dependent function proj2(β) ∶∏(y ∶ B), y↝ proj1(β)
induces the dependent function f ∗(proj2(β)) ∶∏(x ∶ A), f (x)↝ proj1(β) given by

f ∗(proj2(β))(x) = proj2(β)(f (x))
We may now define α ∶∏(x ∶ A), x↝ f −1(proj1(β)) by

α(x) = f −1(f ∗(proj2(β)(x))●η(x),
which shows that A is indeed contractible.

2.4.2 Homotopy isomorphisms are equivalences

It is now time to investigate the anatomy of equivalences somewhat closer. In doing so,
we will establish properties of equivalences that will make it much easier for us to find
equivalences.

Lemma 2.4.5. Suppose that f ∶A→B is an equivalence. Then there exists a function
f −1 ∶ B→ A for which there are homotopies

η ∶∏(x ∶ A), x↝ f −1(f (x))
ε ∶∏(y ∶ B), f (f −1(y))↝ y

32

such that the triangle

f (x) f (f −1(f (x)))

f (x)

f(η(x))

id f(x)
ε(f(x))

(2)

commutes for every x ∶ A.

Remark 2.4.6. Our notation of f −1 here is sloppy: what we really mean is that if⟨ f ,E⟩ ∶ equiv(A,B), then there is a function ⟨ f ,E⟩−1 ∶ B→ A. In other words, the proof
k that f is an equivalence is essential in the definition of the map f −1. We will prove
later that f −1 is also an equivalence. ★
PROOF. Suppose that f ∶ A→ B is an equivalence and that λy.E(y) is a term of the
space isEquiv(f). Then E(y) is a term of type ∑(u ∶ hFiber(f ,y))∏(v ∶ hFiber),v↝ u,
so proj1 E(y) is a term of type hFiber(f ,y), which yields the term proj1(proj1 E(y))
of type A. Thus, the function f −1 ∶= λy.proj1(proj1 E(y)) is of type B→ A. Note that
since proj1 E(y) is in hFiber(f ,y), we have the path

ε(y) ∶= proj2(proj1 E(y)) ∶ f (g(y))↝ y.

To find η we have to look at the second projection of E(f (x)):

proj2 E(f (x)) ∶∏(u ∶ hFiber(f , f (x)), u↝ proj1 E(f (x)).
There is, of course, the element ⟨x, id f(x)⟩ in hFiber(f , f (x)), so we have

proj2 E(f (x))(⟨x, id f(x)⟩) ∶ ⟨x, id f(x)⟩↝ proj1 E(f (x)).
Note that this is a path in the homotopy fiber of f at f (x), hence we can apply lemma
2.3.20 to conclude that there is a path

η(x) ∶ x↝ f −1(f (x)).
such that the triangle in 2 commutes.

Corollary 2.4.7. Every equivalence is an isomorphism.

We gather the data of lemma 2.4.5 in a new definition:

Definition 2.4.8. An adjoint equivalence from A to B is a quintuple ⟨ f ,g,η ,ε,α⟩ con-
sisting of a function f ∶ A → B, a function g ∶ B → A, a homotopy η ∶ idA ∼ g ○ f , a

33

homotopy ε ∶ f ○g ∼ idB and paths α(x) witnessing the commutativity of the triangle

f (x) f (g(f (x)))

f (x)

f(η(x))

id f(x)
ε(f(x))

for every x ∶ A. ⧫
Thus, in lemma 2.4.5 we have shown that every equivalence induces an adjoint

equivalence. The converse is also true and it gives us an alternative way to see that a
function is an equivalence.

Theorem 2.4.9. Every adjoint equivalence induces an equivalence.

PROOF. Suppose that ⟨ f ,g,η ,ε,α⟩ is an adjoint equivalence from A to B. We will show
that f is an equivalence. Unfolding the definition of equivalence, we have to show that

∏(y ∶ B), isContr(hFiber(f ,b)).
Suppose that y ∶ B. Our first task is to find a center of contraction in hFiber(f ,b). Note
that for g(b) we have a path ε(b) ∶ f (g(b))↝ b, so the pair ⟨g(b),ε(b)⟩ is a term of
hFiber(f ,b). Now suppose that ⟨x, p⟩ is another term of hFiber(f ,b). By lemma 2.3.20,
we have to find a path γ ∶ x↝ g(b) such that the triangle

f (g(b))f (x)

b

f(γ)

p ε(b)

commutes. As the path γ we take g(p)●η(x). Then

f (γ) = f (g(p)●η(x))↝ f (g(p))● f (η(x)).
Note that there is, for every p ∶ b′↝ b in B, a canonical path p●ε(b′)↝ ε(b)● f (g(p))
(to see this, use induction on p). Hence can use α to conclude that there is a path

ε(b)● f (g(p))● f (η(x))↝ p●ε(f (x))● f (η(x))↝ p,

which establishes the commutativity of the above triangle.

Using function extensionality, we will also be able to show that the space of equiv-
alences form A to B is itself equivalent to the space of adjoint equivalences from A
to B. We will postpone the proof of this fact until after we have covered function
extensionality in more detail.

34

We have remarked that the above theorem gives another way to show that a function
f ∶ A→ B is an equivalence. That is, we can show that f is an equivalence by finding the
appropriate g, η , ε and α . In fact, to show that f ∶ A→ B is an equivalence, we can do
without the commutative triangle. This means that to show that f is an equivalence, it
suffices to show that f is an isomorphism. However, the space of isomorphisms from A
to B is not equivalent to the space of equivalences from A to B. Nevertheless, it is a very
useful fact which we will exploit over and over again.

Theorem 2.4.10. Every isomorphism is an equivalence.

PROOF. Suppose that f ∶ A→ B is an isomorphism, i.e. that ⟨ f ,g,H,K⟩ is an element of
the space iso(A,B). We will find an adjoint equivalence ⟨ f ,g,η ,ε,α⟩. First we have to
define η , which we take to be

η(x) ∶= g(f (H(x)))−1 ●g(K(f (x)))−1 ●H(x)
and we define ε ∶=K. Then it is left to verify that ε(f (x))● f (η(x))↝ id f(x), i.e. that
the square

f g f g f (x) f g f (x)

f g f (x) f (x)
K f(x)

f H(x)f Hg f(x)

f gK f(x)

commutes for every x ∶ A. We wish to apply lemma 2.3.9 here with the homotopy K f ∶
f g f ∼ f and the path H(x) ∶ x↝ g f (x), but in order to get the above diagram in the right
shape we must show that Hg f (x)↝ g f H(x) for each x ∶ A and that f gK(y)↝K f g(y)
for each y ∶ A. Since these are clearly similar, we concentrate only on the first. Note that
2.3.9, applied to the homotopy H ∶ idA ∼ g f and the path H(x) ∶ x↝ g f (x), gives us the
commutativity of the diagram

g f (x) g f g f (x)

x g f (x)
H(x)

Hg f(x)

H(x)

g f H(x)

for each x ∶ A. So we have Hg f (x)●H(x)↝ g f H(x)●H(x). Precomposing both with
the path H(x)−1 reveals that Hg f (x)↝ g f H(x) as desired.

From this theorem, the following corollaries are easy to verify.

Corollary 2.4.11. The inverse of any equivalence is also an equivalence.

Corollary 2.4.12. Equivalences satisfy the 3-for-2 rule: whenever two of f ∶ A→ B,
g ∶ B→C and g f ∶ A→C are equivalences, so is the third.

35

Corollary 2.4.13. A function is an equivalence whenever it is homotopic to an
equivalence.

Corollary 2.4.14. Any two contractible spaces are equivalent.

Lemma 2.4.15. Suppose that P is a dependent type over A. Then we have an
equivalence

hFiber(proj1,a) ≃ P(a)
for any term a of A.

PROOF. Define the functions

ϕ ∶= λw.(proj2w) ⋅proj2 proj1w ∶ hFiber(proj1,a)→ P(a)
ψ ∶= λu.⟨⟨a,u⟩, ida⟩ ∶ P(a)→ hFiber(proj1,a).

We have to verify that ϕ ○ψ ∼ idmap and that ψ ○ϕ ∼ idmap. For the first, suppose that
u ∶ P(a). Then we have that

ϕ(ψ(u)) = ϕ(⟨⟨a,u⟩, ida⟩ = ida ⋅u = u

so we even get that ϕ ○ψ = idmapP(a). For the second, we will use the induction
principle of dependent sums and show that there is a function

λx,u, p.ψ(ϕ(⟨⟨x,u⟩, p⟩))↝ ⟨⟨x,u⟩, p⟩
Note that

ψ(ϕ(⟨⟨x,u⟩, p⟩)) = ⟨⟨a, p ⋅u⟩, ida⟩.
A path from ⟨⟨a, p ⋅u⟩, ida⟩ to ⟨⟨x,u⟩, p⟩ is found using path induction over p.

2.4.3 Equivalences of total spaces and fiberwise equivalences

In this final subsection of the section about equivalences we will show that if τ ∶∏(x ∶
A), P(x) → Q(x) is a transformation from P to Q, then τ induces an equivalence
between the total spaces whenever τ(x) is an equivalence for each x ∶ A. We will also
show the converse of this result, which will play a role in the next section about function
extensionality.

Definition 2.4.16. Suppose that P and Q are dependent types over A. We say that a
function τ ∶∏(x ∶ A), P(x)→Q(x) is a fiberwise equivalence from P to Q if τ(x) is an
equivalence for each x ∶ A. If τ is a fiberwise equivalence from P to Q, we denote the
fiberwise equivalence λx.τ(x)−1 from Q to P by τ−1 ⧫
Definition 2.4.17. Suppose that P and Q are dependent spaces over A and that τ ∶∏(x ∶
A), P(x)→Q(x). Then we define the function

∑Aτ ∶∑(x ∶ A), P(x)→∑(x ∶ A), Q(x)
by λw.⟨proj1w,τ(proj1w)(proj2w)⟩. ⧫

36

Lemma 2.4.18. Suppose that P and Q are dependent spaces over a space A and
that there is a fiberwise equivalence τ from P to Q. Then

∑A τ ∶∑(x ∶ A), P(x)→∑(x ∶ A), Q(x).
is an equivalence with inverse ∑A τ−1.

PROOF. To verify that id ∼∑A τ−1 ○∑A τ , note that

∑′Aτ(∑A τ(⟨x,u⟩)) =∑′A(⟨x,τ(x,u)⟩) = ⟨x,τ(x)−1(τ(x,u))⟩.
A path from ⟨x,u⟩ to ⟨x,τ(x)−1(τ(x,u))⟩ may be given by a path u↝ τ(x)−1(τ(x,u))
in P(u). For this path we simply take the unit η(x) of the adjoint equivalence that τ(x)
induces. The verification that ∑A τ ○∑A τ−1 ∼ id follows by symmetry.

The following theorem by Voevodsky is a converse to the previous lemma. It is
a bit more technical because (∑A τ)−1 does not give the candidate inverses τ(x)−1

directly. Yet it is a powerful tool for constructing equivalences, where especially the
case in which the total spaces ∑(x ∶ A), P(x) and ∑(x ∶ A), Q(x) are contractible is
useful. Indeed, in that case the only thing we need to conclude that the fibers P(x)
are equivalent to Q(x) for each x ∶ A is a transformation from P to Q, i.e. a function
τ ∶∏(x ∶ A), P(x)→ Q(x). We will use this idea in the proof that the weak function
extensionality principle implies the strong function extensionality principle (theorem
2.5.8), in the section on the univalence axiom we will use it to show that functions
are total single-valued relations (theorem 2.7.10) and in the next chapter we will use
this idea to show that, assuming univalence, the fundamental group of the circle is Z
(theorem 3.3.9).

Theorem 2.4.19. Suppose that P and Q are dependent spaces over a space A and
that τ ∶∏(x ∶ A), P(x)→Q(x) has the property that ∑A τ is an equivalence. Then τ
is a fiberwise equivalence.

PROOF. First, we have to define the candidate inverse σ(x) ∶Q(x)→ P(x) of τ(x) for
each x ∶A. Suppose that x ∶A and v ∶Q(x). Since∑A τ is an equivalence, it has an inverse(∑A τ)−1 which we may apply to the pair ⟨x,v⟩ to obtain

⟨x′,u⟩ ∶= (∑A τ)−1(⟨x,v⟩).
Now notice that ∑A τ(⟨x′,u⟩) = ⟨x′,τ(x′,u)⟩ and that the counit ε of the adjoint equiv-
alence given by ∑A τ yields the path ε(⟨x,v⟩) ∶ ⟨x′,τ(x′,u)⟩↝ ⟨x,v⟩. Thus, we find
ε(⟨x,v⟩)0 ∶ x′↝ x, which gives us

σ(x,v) ∶= ε(⟨x,v⟩)0 ⋅u ∶ P(x).
Now we wish to show that idP(x) ∼ σ(x) ○ τ(x) and that τ(x) ○σ(x) ∼ idQ(x). For
u ∶ P(x), notice that a path

ε(⟨x,τ(x,u)⟩)0 ⋅proj2((∑A τ)−1(⟨x,τ(x,u)⟩))↝ u

37

may be given by a path

⟨x,ε(⟨x,τ(x,u)⟩)0 ⋅proj2((∑A τ)−1(⟨x,τ(x,u)⟩))⟩↝ ⟨x,u⟩.
This helps, since we now may use the general fact that ⟨x, p ⋅ a⟩ ↝ ⟨y,a⟩ whenever
p ∶ y↝ x is a path in A and a ∶ P(y), which gives us

⟨x,ε(⟨x,τ(x,u)⟩)0 ⋅proj2((∑A τ)−1(⟨x,τ(x,u)⟩))⟩
↝ ⟨y,proj2((∑A τ)−1(⟨x,τ(x,u)⟩))⟩
= (∑A τ)−1(⟨x,τ(x,u)⟩)↝ ⟨x,u⟩,

where the latter path is given by the counit of the adjunction ∑A τ . To get a homotopy
τ(x) ○σ(x) ∼ idQ(x), notice that for v ∶ Q(x) we can find a path τ(x,σ(x,v))↝ v by
finding a path

⟨x,τ(x,ε(⟨x,v⟩)0 ⋅proj2((∑A τ)−1(⟨x,v⟩))⟩↝ ⟨x,v⟩.
By a similar calculation, we obtain

⟨x,τ(x,ε(⟨x,v⟩)0 ⋅proj2((∑A τ)−1(⟨x,v⟩))⟩
↝ ⟨y,ε(⟨x,v⟩)0 ⋅τ(y,proj2((∑A τ)−1(⟨x,v⟩))⟩
↝ ⟨x,τ(x,proj2((∑A τ)−1(⟨x,v⟩)⟩
= ∑A τ((∑A τ)−1(⟨x,v⟩))↝ ⟨x,v⟩

We have used that τ(x, p ⋅a)↝ p ⋅τ(y,a) for each path p ∶ y↝ x and each a ∶ P(y). This
fact follows from path induction on p.

Corollary 2.4.20. Suppose that P and Q are dependent types over A with con-
tractible total spaces, i.e. there are terms

K ∶ isContr(∑(x ∶ A), P(x)) and L ∶ isContr(∑(x ∶ A), Q(x)).
Then there is a term of type (∏(x ∶ A), P(x)→Q(x))→ (∏(x ∶ A), P(x) ≃Q(x)).

2.5 The axiom of choice and function extensionality
Suppose we set ourselves the task of proving that the product type ∏(x ∶ A), P(x) is
contractible, whenever all of the types P(x) are contractible. Then we take two sections
f and g of P and we have to give a path from f to g. This raises a problem, because the
hypothesis on P only allows us to construct a homotopy from f to g. Homotopies can
be seen as a weaker version of paths in a space of sections; what we really want in this
situation is that they induce paths, i.e. that there is a function

∏(A ∶Type)(P ∶ A→Type)(f ,g ∶∏(x ∶ A), P(x)), (f ∼ g)→ (f ↝ g)
In this section we will show

38

Definition 2.5.1 (The weak functon extensionality principle). The weak function ex-
tensionality principle is that the space

∏(x ∶ A), P(x)
is contractible for every type A and every dependent type P ∶ A→Type such that P(x) is
contractible for each x ∶ A. In other words, the weak function extensionality principle is
a term wk−funExt of type

∏{A ∶Type}{P ∶A→Type}, (∏(x ∶A), isContr(P(x)))→ isContr(∏(x ∶A), P(x)).⧫
Our goal in this section is to show that the weak function extensionality principle

implies the (strong) function extensionality principle; i.e. that there is a term of type

∏{A ∶Type}{P ∶ A→Type}(f ,g ∶∏(x ∶ A), P(x)), isEquiv(hApply(f ,g))
This will be established in theorem 2.5.8. A note: the Coq repositories on homotopy
type theory require also the η-rule in order to prove the strong function extensionality
principle from the weak. However, we have assumed the η-rule to hold (even defi-
nitionally), so we allow ourselves to freely make use of it. The reason that the Coq
repositories mentions it explicitly is that the η-rule is not built in in Coq. In appendix A
we justify our approach to the η-rule by presenting product spaces as inductive spaces
with a basic constructor λ and with the β -rule as the computation rule.

2.5.1 A weak version of the axiom of choice

Before we begin with the actual investigation of the axiom of choice, we introduce some
notation.

Definition 2.5.2. Suppose that P is a dependent type over a type A and that R ∶∏(x ∶
A), P(x)→Type is a dependent type over P. Then we define the types

section(R) ∶=∏(x ∶ A)∑(u ∶ P(x)), R(x,u)
choice(R) ∶=∑(s ∶∏(x ∶ A), P(x))∏(x ∶ A), P(x,s(x)). ⧫

Lemma 2.5.3 (The axiom of choice). For every dependent type P over a type A
and every dependent type R ∶∏(x ∶ A), P(x)→Type over P, there is a function

ac ∶ section(R)→ choice(R).
PROOF. Suppose that f ∶ section(R). Then

s ∶= λx.proj1 f (x)
is a section of P with the property that∏(x ∶ A), R(x,s(x)). Indeed, the function

λx.proj2 f (x)
is a term of type∏(x ∶ A), R(x,s(x)).

39

The main goal of this section is to find a condition on R under which ac is an equiv-
alence. Finding a candidate homotopy inverse ac−inv for ac is easy and establishing
that ac−inv is its right inverse as well. The difficulty is to show that ac−inv is also a left
inverse for ac.

Lemma 2.5.4. For every dependent type P over a type A and every dependent type
R ∶∏(x ∶ A), P(x)→Type over P, there is a function

ac−inv ∶ choice(R)→ section(R).
PROOF. Suppose that ⟨s,ϕ⟩ is a term of type choice(R). Then

λx.⟨s(x),ϕ(x)⟩
is a term of type section(R).

Lemma 2.5.5. The function ac−inv is a right inverse of ac.

PROOF. We have to show that ac○ac−inv ∼ id. Suppose that ⟨s,ϕ⟩ ∶ choice(R). Then
we have

ac(ac−inv(⟨s,ϕ⟩)) = ac(λx.⟨s(x),ϕ(x)⟩)= ⟨λx.s(x),λx.ϕ(x)⟩.
Hence, from the η-rule it follows that proj1(ac(ac−inv(⟨s,ϕ⟩))) = λx.s(x) = s and that
proj1(ac(ac−inv(⟨s,ϕ⟩))) = λx.ϕ(x) = ϕ . This shows that ac−inv is a right inverse for
ac.

The question whether ac−inv is also a left inverse for ac is more subtle. Note that if
f ∶ section(R), then

ac−inv(ac(f)) = ac−inv(⟨λx.proj1 f (x),λx.proj2 f (x)⟩)= λx.⟨proj1 f (x),proj2 f (x)⟩.
We would like to conclude here that this equals λx. f (x) = f , but we have not the means
to do so. However, if the spaces

∑(u ∶ P(x)), R(x,u)
are contractible for each x ∶ A, we may apply the weak function extensionality principle,
which says in this case that section(R) is contractible, to derive that there is a path
λx.⟨proj1 f (x),proj2 f (x)⟩↝ f . We slightly generalize this observation in the following
lemma.

Lemma 2.5.6. Suppose that P is a dependent type over a type A and that R ∶∏(x ∶
A), P(x)→ Type is a dependent type over P with the property that for every x ∶ A
and every

a,b ∶∑(u ∶ P(x)), R(x,u),
the path space a↝ b is contractible. Assuming the weak function extensionality
principle, it follows that ac is an equivalence.

40

PROOF. We only have to show that ac−inv ○ac ∼ id. Suppose that f ∶ section(R). By
the weak function extensionality principle, it suffices to show that

∑(u ∶ P(x)), R(x,u)
is contractible for each x ∶ A. Note that ∑(u ∶ P(x)), R(x,u) satisfies the hypothesis of
lemma 2.3.17, hence we have a function

(∑(u ∶ P(x)), R(x,u))→ isContr(∑(u ∶ P(x)), R(x,u)).
Since we have f (x) ∶∑(u ∶ P(x)), R(x,u), it follows that ∑(u ∶ P(x)), R(x,u) is con-
tractible.

2.5.2 The strong function extensionality principle from the weak

Recall from lemma 2.3.16, that for any space A and any a ∶ A, the space ∑(x ∶ A), x↝ a
is contractible. If we were to show that homotopies correspond to paths, we would
expect similar behavior for homotopies.

Lemma 2.5.7. Suppose that P is a dependent space over A. Then the space

∑(g ∶∏(x ∶ A), P(x)), g ∼ f

is contractible for each section f of P.

PROOF. Suppose that f ∶∏(x ∶A), P(x) is a section of P and let R be the dependent type
over P given by R(x,u) ∶= u↝ f (x). By lemma 2.3.16 it follows that ∑(u ∶ P(x)), u↝
f (x) is contractible for each x ∶ A. Hence we may apply lemma 2.5.6 to conclude that

(∑(g ∶∏(x ∶ A), P(x)), g ∼ f) ≃∏(x ∶ A)∑(u ∶ P(x)), u↝ f (x).
On the right hand side, we have a product of contractible spaces, which is contractible
by the weak function extensionality principle.

Note that the above lemma nearly gives us the strong function extensionality prin-
ciple. Reading back all the functions involved in the proof, we see that the center of
contraction of ∑(g ∶∏(x ∶ A), P(x)), g ∼ f

is the pair ⟨ f ,λx.id f(x)⟩.
Theorem 2.5.8. Assuming the weak function extensionality principle, we get a term
funExt of type

∏{A ∶Type}{P ∶ A→Type}(f ,g ∶∏(x ∶ A), P(x)), isEquiv(hApply(f ,g))

41

PROOF. Suppose that f ∶∏(x ∶ A), P(x). Recall from theorem 2.4.19 that in order to
show that ∏(g ∶∏(x ∶ A), P(x)), isEquiv(hApply(f ,g)), it suffices to show that the
function λg.hApply(f ,g) induces an equivalence

(∑(g ∶∏(x ∶ A), P(x)), f ↝ g) ≃∑(g ∶∏(x ∶ A), P(x)), f ∼ g.

This follows, since both of these spaces are contractible.

Using the strong function extensionality principle we are able to prove that ac is an
equivalence.

Theorem 2.5.9. For each dependent space P ∶ A→Type over a space A and each
R ∶∏(x ∶ A), (P(x)→Type) over P, we have that ac is an equivalence.

PROOF. Recall that the missing step in the proof that ac is an equivalence was that

λx.⟨proj1 f (x),proj2 f (x)⟩↝ λx. f (x).
Since ⟨proj1 f (x),proj2 f (x)⟩↝ f (x) for each x ∶A, this follows from the strong function
extensionality principle.

2.6 Basic examples of equivalences
In this section we will prove some basic equivalences that will be useful later on. In all
of these equivalences, the function extensionality principle is used. Apart from the basic
equivalences, we will also start with our program to find correspondence theorems for
every space that has an inductive definition. These correspondence theorems assert that
there is, for an inductively defined type A and a dependent type P over A, an equivalence
between the space of sections of P and the data required by the induction principle to
construct a section. They come in a dependent and a non-dependent flavor, and we
may use these observations to establish that an inductively defined type is determined
uniquely up to equivalence.

In this section, we will find correspondence theorems for dependent sums, the
unit and empty types and for identity types. In chapter 3 we will continue to find
correspondence theorems for the higher inductive types we define there. With this
program in mind, we will slowly work towards the point of view that the correspondence
theorems are a mere reformulation of the induction principles.

We begin with the observation that if P and Q are fiberwise equivalent dependent
types over A, then the spaces of sections are also equivalent. This result is analogous
to that of lemma 2.4.18 about the equivalence of the total spaces when a fiberwise
equivalence is given. However, there is no analogue of theorem 2.4.19 for product
spaces.

Lemma 2.6.1. For two dependent spaces P and Q over A such that P(x) is equiva-
lent to Q(x) for each x ∶ A. Then∏(x ∶ A), P(x) and∏(x ∶ A), Q(x) are equivalent.

42

PROOF. Define the function ϕ ∶∏(x ∶ A), P(x)→∏(x ∶ A), Q(x) by

λ f .λx.τ(x, f (x))
and define ψ ∶∏(x ∶ A), Q(x)→∏(x ∶ A), P(x) by

λg.λx.τ(x)−1(g(x)).
To show that ψ(ϕ(f)) ↝ f for each f ∶∏(x ∶ A), P(x) and that ϕ(ψ(g)) ↝ g for
each g ∶ ∏(x ∶ A), Q(x), we will use the function extensionality principle. In the
first case, we have to verify that ψ(ϕ(f))(x)↝ f (x) for each x ∶ A. By definition,
ψ(ϕ(f))(x) = τ(x)−1(τ(x)(f (x))); the fact that τ(x) is an equivalence now gives the
desired result. A homotopy ϕ(ψ(g)) ∼ g is found similarly.

The following basic equivalence is a correspondence theorem for dependent sums.
The equivalence expresses that a section of a dependent type over a sum is uniquely
determined by its action on the canonical pairs. In proving this lemma, one sees
explicitly the power of the dependency in the induction principle.

Lemma 2.6.2 (Correspondence theorem for sums). Suppose that P is a depen-
dent space over a space A and that Q ∶ (∑(x ∶ A),P(x))→ Type is a dependent
space over ∑(x ∶ A), P(x). Then there is an equivalence

(∏(x ∶ A)(u ∶ P(x)), Q(⟨x,u⟩)) ≃∏(w ∶∑(x ∶ A), P(x)), Q(w) (3)

PROOF. Note that if f ∶∏(x ∶A)(u ∶P(x)), Q(⟨x,u⟩), we can use the induction principle
for ∑(x ∶ A), P(x) to find a section ϕ(f) ∶∏(w ∶∑(x ∶ A),P(x)), Q(w) of Q with the
property that ϕ(f)(⟨x,u⟩) = f (x,u) for each x ∶ A and u ∶ P(x). This defines the map

ϕ ∶∏(x ∶ A)(u ∶ P(x)), Q(⟨x,u⟩)→∏(w ∶∑(x ∶ A), P(x)), Q(w)
For g ∶∏(w ∶∑(x ∶ A), P(x)), Q(w) we have

ψ(g) ∶= g○ ⟨−,−⟩ ∶∏(x ∶ A)(u ∶ P(x)), Q(⟨x,u⟩).
Note that the computation rule of the induction principle for ∑(x ∶ A), P(x) automati-
cally gives that ψ(ϕ(f)) = f for each f ∶∏(x ∶ A)(u ∶ P(x)), Q(⟨x,u⟩). Therefore, it is
left to show that ϕ(ψ(g))↝ g for each section g of Q. Using the function extensionality
principle, it suffices to show that

∏(w ∶∑(x ∶ A), P(x)), ϕ(g○ ⟨−,−⟩)↝ g.

In other words, we have to provide a section of a certain dependent type over ∑(x ∶
A), P(x). Hence we will use the induction principle. Note that for x ∶ A and u ∶ P(x), we
have

ϕ(g○ ⟨−,−⟩)(x,u) = g(⟨x,u⟩).
Thus, the induction principle gives us the desired section.

43

The following corollary is a non-dependent version of the above statement. It shows
how the induction principle for dependent sums is ‘like’ introducing disjunction on the
left.

Corollary 2.6.3. Suppose that P is a dependent space over A and that B is a space.
Then there is an equivalence

(∏(x ∶ A), P(x)→ B) ≃ ((∑(x ∶ A), P(x))→ B). (4)

We use the above equivalences to establish that dependent sums are determined
uniquely up to equivalence by their induction principles. Notice how we can think of
the space on the right hand side of equation (4) as the space of cocones with vertex
B over the collection P of types. The equivalence is the type theoretical analogue of
the statement that ∑(x ∶ A), P(x) is the vertex of a colimiting cocone. The corollary
below states that such vertices are all equivalent and its proof is a direct analogue to the
category theoretical proof that any two vertices of colimiting cocones for a diagram are
isomorphic. This approach turns out to be fruitful for not only the ordinary inductive
spaces that we cover in this section, but also for the higher inductive spaces of the next
chapter.

Corollary 2.6.4. Any two spaces X and Y satisfying the induction principle for∑(x ∶ A), P(x) are equivalent.

PROOF. Suppose that for a type X there is a function

⟨−,−⟩X ∶∏(x ∶ A), P(x)→ X

and, as an induction principle, that for each dependent type Λ ∶ X →Type and each

f ∶∏(x ∶ A)(u ∶ P(x)), Λ(⟨x,u⟩X)
there is a section s ∶∏(w ∶ X), Λ(x) with the property that s(⟨x,u⟩X) = f (x,u) for each
x ∶ A and u ∶ P(x). Then we have an equivalence

αB ∶ (∏(x ∶ A), P(x)→ B) ≃ (X → B)
for each type B. Note that αX(⟨−,−⟩X) ∼ idX ; one can prove this using the induction
principle for X . Making similar assumptions for a space Y , we get a similar equivalence

βB ∶ (∏(x ∶ A), P(x)→ B) ≃ (Y → B)
for each type B. Again, we remark that βY (⟨−,−⟩Y) ∼ idY . Now we find functions
f ∶ X →Y and g ∶Y → X defined by

f ∶= αY (⟨−,−⟩Y)
g ∶= βX(⟨−,−⟩X).

We wish to show that f ○g↝ idY and that g○ f ↝ idX . Since we know that the homotopy
fibers of αB are contractible for each type B and since the homotopy fiber of β−1

Y at

44

⟨−,−⟩Y contains idY , we note that in order to show that f ○g↝ idY it suffices to find
a path β−1

Y (f ○g)↝ ⟨−,−⟩Y . We use the induction principle for Y , and thus it suffices
to verify that β−1

Y (f ○g)(x,u)↝ ⟨x,u⟩Y for each x ∶ A and u ∶ P(x). This is a matter of
calculating, taking the definitions of α and β into account:

β−1
Y (f ○g)(x,u) = f ○g(⟨x,u⟩Y)= αY (⟨−,−⟩Y)(βX(⟩−,−⟩X)(⟨x,u⟩Y))= αY (⟨−,−⟩Y)(⟨x,u⟩X)= ⟨x,u⟩Y .

This finishes the proof that f ○g↝ idY ; the assertion g○ f ↝ idX is dealt with by symmetry
of the situation.

The correspondence theorem for dependent sums was the most difficult of the corre-
spondence theorems we cover in this section. This is mainly due to the structure of its
basic constructors. The cases of unit and empty are, as one might expect, considerably
easier. Notice that in the case of unit, we don’t have to prove that it is determined
uniquely up to equivalence, since we have already established this fact by observing
that unit is contractible.

Lemma 2.6.5 (Correspondence theorem for unit). For any dependent type P over
the unit type, there is an equivalence

P(tt) ≃∏(x ∶ unit), P(x).
PROOF. Suppose u ∶ P(tt); then the induction principle for unit gives a section ϕ(u) ∶∏(x ∶ unit), P(x) with the property that ϕ(u)(tt) = u. If f ∶∏(x ∶ unit), P(x) is a
section of P, define ψ(f) ∶= f (tt). The computation rule for the induction principle
immediately gives that ψ(ϕ(u)) = u, so it is left to show that ϕ(ψ(f))↝ f for each
section f of P. Using the function extensionality principle, it suffices to show that

∏(x ∶ unit), ϕ(f (tt))(x)↝ f (x).
To show that such a section exists, we use the induction principle for unit once more:
note that ϕ(f (tt))(tt) = f (tt).

Corollary 2.6.6. For every space A there is an equivalence

A ≃ (unit→ A).
Lemma 2.6.7 (Correspondence theorem for empty). Suppose P is a dependent
type over the empty type empty. Then we have an equivalence

unit ≃∏(x ∶ empty), P(x).

45

PROOF. Note that it suffices to show that ∏(x ∶ empty), P(x) is contractible. By the
induction principle for the empty type, there is a section f of P. If g is a section of P,
we use the function extensionality principle to show that g↝ f . A homotopy from g to
f is found with the induction principle for empty.

Corollary 2.6.8. For any type A we have unit ≃ (empty→ A).

Corollary 2.6.9. Suppose that X has the induction principle that for any dependent
type P over X there is a section of P. Then X ≃ empty.

PROOF. By the above corollary, we get functions f ∶ empty→ X and g ∶ X →. There
is a homotopy f ○ g ∼ idX by the induction principle of X and there is a homotopy
g○ f ∼ idempty by the induction principle of empty.

Lemma 2.6.10 (Correspondence theorem for IdA). Suppose we have a dependent
space D ∶∏(x,y ∶ A), (x↝ y)→ Type over IdA for some type A. Then we have an
equivalence

(∏(x ∶ A), D(x,x, idx)) ≃∏(x,y ∶ A)(p ∶ x↝ y), D(x,y, p).
PROOF. A function

ϕ ∶ (∏(x ∶ A), D(x,x, idx))→∏(x,y ∶ A)(p ∶ x↝ y), D(x,y, p)
is given by the induction principle for IdA and a function

ψ ∶ (∏(x,y ∶ A)(p ∶ x↝ y), D(x,y, p))→∏(x ∶ A), D(x,x, idx)
is given by λ f .λx. f (x,x, idx). If d ∶∏(x ∶ A), D(x,x, idx), then ψ(ϕ(d))(x) = d(x) by
the conversion rule. Hence we get a homotopy ψ ○ϕ ∼ id from function extensionality.
If f ∶∏(x,y ∶ A)(p ∶ x↝ y), D(x,y, p), we can prove with path induction that there is a
homotopy ϕ(ψ(f)) ∼ f . Indeed, for x ∶ A we have

ϕ(ψ(f))(x,x, idx) =ψ(f)(x) = f (x,x, idx).
Therefore, the function extensionality principle gives that ϕ(ψ(f))↝ f and hence a
homotopy ϕ ○ψ ∼ id.

Definition 2.6.11. Suppose that A is a type. A (binary) relation over A is a dependent
type R ∶ A→ A→Type. We say that R is reflexive if there is a function

ρ ∶∏(x ∶ A), R(x,x). ⧫
Corollary 2.6.12. Suppose that R ∶ A→ A→Type is a binary relation over A. Then
we have an equivalence

(∏(x ∶ A), R(x,x)) ≃∏(x,y ∶ A), (x↝ y)→ R(x,y).

46

The previous corollary says, loosely speaking, that for a binary relation R over A,
proofs of reflexivity of R are the same as proofs of the assertion that IdA is contained in
R.

Lemma 2.6.13. Suppose that R ∶ A→ A→Type is a relation over A with reflexivity
term

ρ ∶∏(x ∶ A), R(x,x)
and with the property that for every dependent type D ∶∏(x,y ∶ A), R(x,y)→Type
over R and every d ∶∏(x ∶ A), D(x,x,ρ(x)) there is a section

JR(D,d) ∶∏x,y ∶ A(p ∶ R(x,y)), D(x,y, p)
of R with the property that JR(D,d, idx) = d(x) for each x ∶ A. Then we have that

(x↝ y) ≃ R(x,y)
for each x,y ∶ A.

PROOF. Since R satisfies the same induction principle as the identity type on A, it
follows that there are equivalences

(∏(x ∶ A), S(x,x)) ≃∏(x,y ∶ A), R(x,y)→ S(x,y)
for any S ∶A→A→Type. Therefore, there is a function f ∶∏(x,y ∶A), R(x,y)→ (x↝ y)
such that f (x,x,ρ(x))↝ idx for each x ∶ A. Also, there is a function g ∶∏(x,y ∶ A), (x↝
y)→ R(x,y) such that g(x,x, idx)↝ ρ(x) for each x ∶ A.

To show that g○ f ∼ idmap, it suffices to show that g○ f is in the same homotopy
fiber as idmap taken with respect to the above equivalence, i.e. we only have to verify
that g○ f (x,x,ρ(x))↝ ρ(x). But this is immediate from the properties of f and g we
stated. The fact that f ○g ∼ idmap follows by a similar remark.

We finish this section by stating some more useful equivalences without proof. As
most difficult basic equivalences have been constructed, we leave the following to the
reader.

Lemma 2.6.14. For every triple A, B, C of spaces there is an equivalence

(A→ B→C) ≃ (A×B→C).
Lemma 2.6.15. For every triple A, B, C of spaces there is an equivalence

(A→C)×(B→C) ≃ (A+B→C).
Lemma 2.6.16. Suppose that B is a contractible space. Then for any space A there
are equivalences

A×B ≃ A and (B→ A) ≃ A.

Lemma 2.6.17. For any two types A and B, we have A×B ≃ B×A and A+B ≃ B+A.

47

2.7 The univalence axiom
We have seen that the identity map for a type A is always an equivalence. This generalizes
to all paths between types:

Lemma 2.7.1. For every pair A, B of types and every path p ∶ A↝ B in Type there
is an equivalence υ(A,B, p) ∶ A ≃ B.

PROOF. Let D(A,B, p) be the space A ≃ B of equivalences from A to B. Then idmapA
is a term of D(A,A, idA), so by the induction principle for identity types there is a
dependent function of type

∏(A,B ∶Type), (A↝ B)→ (A ≃ B).
Definition 2.7.2. The univalence axiom is the statement that υ(A,B) is an equivalence
for all types A and B. In other words, assuming the univalence axiom is assuming that
there is a term

univalence ∶∏(A,B ∶Type), isEquiv(υ(A,B)). ⧫
Using the univalence axiom, we can show that there is an induction principle for

equivalences similar to that for paths. This insight will play a role in the proof that the
univalence axiom implies function extensionality.

Theorem 2.7.3. Suppose that

D ∶∏(A,B ∶Type), (A ≃ B)→Type

is a dependent type over the equivalences. If there is a function

d ∶∏(A ∶Type), D(A,A, idmapA),
then there is a section J(D,d) ∶∏(A,B ∶Type)(e ∶ A ≃ B), D(A,B,e) of D.

PROOF. Suppose that A and B are types and that e ∶A ≃B. Note that since there is a path

υ(A,B)(υ(A,B)−1(e))↝ e

in A ≃ B, it suffices to find a term of type D(A,B,υ(A,B)(υ(A,B)−1(e))). From this,
it follows that it is enough to find a section of the dependent type D′ over the paths of
Type given by

D′(A,B, p) ∶=D(A,B,υ(A,B, p))
We find such a section with the path induction principle. Note that for an identity
path idA ∶ A↝ A, we have υ(A,A, idA) = idmapA and hence we get that D′(A,A, idA) =
D(A,A, idmapA). Since we have d(A) ∶ D(A,A, idmapA) for each type A, the result
follows.

Corollary 2.7.4. If A ≃ B, then (X → A) ≃ (X → B) for each space X.

48

PROOF. We apply the induction principle for equivalences, so we need to see that
the identity equivalence on A induces an equivalence (X → A) ≃ (X → A), which is
obvious.

Note how we bypass any argument that otherwise would involve the function
extensionality principle by using that we can do induction over equivalences. In the
rest of this section we will prove the weak function extensionality principle from the
univalence axiom, which was one of Voevodsky’s first applications of the univalence
axiom.

Lemma 2.7.5. For any type A, the maps

src ∶= λw.proj1 proj1w ∶ (∑(x,y ∶ A), x↝ y)→ A

trg ∶= λw.proj2 proj1w ∶ (∑(x,y ∶ A), x↝ y)→ A

are both equivalences with inverse

ι ∶= λx.⟨x,x, idx⟩ ∶ A→∑(x,y ∶ A), x↝ y.

PROOF. We will only verify that ι ○ src ∼ idmap and that src○ ι ∼ idmap. Note that the
latter homotopy is trivial. Suppose that w ∶∑(x,y ∶ A), x↝ y. Note that there are x,y ∶ A
and p ∶ x↝ y such that w↝ ⟨x,y, p⟩, so it suffices to find a path

ι(src(⟨x,y, p⟩))↝ ⟨x,y, p⟩.
Now observe that ι(src(⟨x,y, p⟩)) = ⟨x,x, idx⟩, so it is enough to find a path ⟨x, idx⟩↝⟨y, p⟩. This path is given by the path lifting property, since p↝ p ⋅ idx. The case of trg is
similar.

Lemma 2.7.6. The univalence axiom implies the naive non-dependent function
extensionality principle, i.e. that

∏(A,B ∶Type)(f ,g ∶ A→ B), (f ∼ g)→ (f ↝ g)
PROOF. Suppose that H ∶ f ∼ g for f ,g ∶ A→ B. We may construct the functions

f̃ ∶= λx.⟨ f (x), f (x), id f(x)⟩ ∶ A→∑(u,v ∶ B), u↝ v

g̃ ∶= λx.⟨ f (x),g(x),H(x)⟩ ∶ A→∑(u,v ∶ B), u↝ v.

Then trg○ f̃ = λx. f (x) = f and trg○ g̃ = λx.g(x) = g and hence it is enough to show that
there is a path f̃ ↝ g̃. Now we use corollary 2.7.4 with the map src, which gives us that

(A→∑(u,v ∶ B), u↝ v) ≃ (A→ B).
Since src○ f̃ = λx. f (x) = src○ g̃, we get our path f̃ ↝ g̃.

49

Theorem 2.7.7. The univalence axiom implies the weak function extensionality
principle.

PROOF. Suppose that P ∶ A→Type is a dependent type over A and that

K ∶∏(x ∶ A), isContr(P(x)).
Define U ∶ A→ Type to be the dependent type λx.unit. We will first show that there
is a path P↝U . Since both P and U are of type A→ Type, we may apply the above
lemma 2.7.6, which gives us that it is enough to verify that P ∼U . In other words, we
have to prove that P(x)↝ unit for each x ∶ A. Since each P(x) is contractible there
is an equivalence P(x) ≃ unit for each x ∶ A. By the univalence axiom we get a path
P(x)↝ unit.

Since we have a path P↝U , there is a path between the types

(∏(x ∶ A), P(x))↝ (∏(x ∶ A), U(x))
so we only have to verify that∏(x ∶A), U(x), which is equal to A→ unit, is contractible.
Any function from A to unit is homotopic to the function λx.tt, hence the result follows
from another application of lemma 2.7.6.

We finish this section with two new applications of the univalence axiom. The first is
an observation of Bas Spitters, which he shared with the author at the Fourth Workshop
on Formal Topology in Ljubljana in 2012. Like the familiar “families of sets – indexed
sets” equivalence, there is an equivalence

(∑(X ∶Type), X → A) ≃ (A→Type)
for any type A. Since we will need paths between types, the proof relies heavily on the
univalence axiom. We will also need the following lemma.

Lemma 2.7.8. Suppose A is a type and consider the dependent type P ∶Type→Type
over Type given by P(X) ∶= X → A. If e ∶ X ≃Y is an equivalence and f ∶ X → A, then

υ(X ,Y)−1(e) ⋅ f ↝ f ○e−1.

PROOF. The theorem follows by the induction principle for equivalences. Recall that
for the identity function idmapX on X , we have υ(X ,X , idmapX)↝ idX and hence we
have υ(X ,X , idmapX) ⋅ f ↝ f . A path f ↝ f ○ idmapX

−1 follows from an application of
the η-rule.

Theorem 2.7.9 (Spitters). Assuming the univalence axiom, we have an equivalence

(∑(X ∶Type), X → A) ≃ (A→Type)
for any type A.

50

PROOF. Define the function ϕ ∶ (∑(X ∶Type), X → A)→ (A→Type) by

λw.λx.hFiber(proj2w,x).
In the other direction, define ψ ∶ (A→Type)→ (∑(x ∶ A), X → A) by

λP.⟨(∑(x ∶ A), P(x)),proj1⟩.
To show that ϕ ○ψ ∼ idmap, suppose that P ∶A→Type is a dependent type over A. Then
we have

ϕ(ψ(P)) = ϕ(⟨(∑(x ∶ A), P(x)),proj1⟩)= λx.hFiber(proj1,x).
By theorem 2.7.7 we have function extensionality and therefore it suffices to show that
there is a path

hFiber(proj1,x)↝ P(x)
for any x ∶ A. Another application of the univalence axiom gives us that it suffices to find
an equivalence from hFiber(proj1,x) to P(x), which we have done in lemma 2.4.15.

To show that ψ ○ϕ ∼ idmap, we apply the induction principle for dependent sums.
Hence it is enough to show that

ψ(ϕ(⟨X , f ⟩))↝ ⟨X , f ⟩
for each type X and each function f ∶ X → A. Note that

ψ(ϕ(⟨X , f ⟩)) =ψ(λx.hFiber(f ,x))= ⟨(∑(x ∶ A), hFiber(f ,x)),proj1⟩
Thus, we must find paths

γ0 ∶ (∑(x ∶ A), hFiber(f ,x))↝ X and γ1 ∶ γ0 ⋅proj1↝ f .

By the univalence axiom, we may find γ0 by constructing an equivalence from ∑(x ∶
A), hFiber(f ,x) to X . We do this with the basic equivalences we have seen so far:

∑(x ∶ A), hFiber(f ,x) =∑(x ∶ A)(y ∶ X), f (y)↝ x

≃∑(y ∶ X), (∑(x ∶ A), f (y)↝ x)
≃∑(y ∶ X), unit≃ X .

We have used that the space ∑(x ∶ A), f (y)↝ x is contractible for any y. The function
we obtain in this way is

e ∶= λw.proj1 proj2w with inverse λx.⟨ f (x),⟨x, id f(x)⟩⟩.

51

By lemma 2.7.8, we see that

γ0 ⋅proj1↝ proj1 ○γ−1
0 = λx.proj1⟨ f (x),⟨x, id f(x)⟩⟩ = λx. f (x) = f ,

which finishes the proof.

The second application of the univalence axiom asserts that the notions of function
and graph coincide. We have chosen to state the theorem in its non-dependent form, but
the proof of the dependent version of the assertion goes along the same lines.

Theorem 2.7.10. The univalence axiom implies that functions from A to B are total
single-valued relations over A×B: i.e. there is an equivalence

(∑(R ∶ A→ B→Type)∏(a ∶ A), isContr(∑(b ∶ B), R(a,b))) ≃ A→ B.

PROOF. For any function f ∶ A→ B there is the relation R f ∶ A→ B→ Type given by
R f (a,b) ∶= f (a)↝ b. It is immediate from 2.3.16 that∑(b ∶ B), R f (a,b) is contractible
for each a ∶ A. This determines a function

ψ ∶ (A→ B)→∑(R ∶ A→ B→Type)∏(a ∶ A), isContr(∑(b ∶ B), R(a,b)).
A function ϕ in the other direction is given by

λ ⟨R,S⟩.λa.proj1 proj1S(a).
If f ∶ A→ B, we read from the proof of 2.3.16 that

proj1(proj2ψ(f))(a) = ⟨ f (a), id f(a)⟩.
Therefore, it is immediate (by extensionality) that ϕ(ψ(f))↝ f for each f ∶ A→ B. To
show that ψ ○ϕ ∼ idmap, suppose that ⟨R,S⟩ is a total single-valued relation. To find a
path from ψ(ϕ(⟨R,S⟩)) to ⟨R,S⟩ it suffices to find paths

γ0 ∶ proj1ψ(ϕ(⟨R,S⟩))↝ R and γ1 ∶ γ0 ⋅proj2ψ(ϕ(⟨R,S⟩))↝ S.

Here we may remark that the space ∏(a ∶ A), isContr(∑(b ∶ B), R(a,b)) is itself
contractible as a consequence of the weak function extensionality principle and the fact
that there is a function isContr(X)→ isContr(isContr(X)) for each space X . Hence it
suffices to find γ0. Note that

proj1ψ(ϕ(⟨R,S⟩))(a,b) = proj1 proj1S(a)↝ b.

Using the function extensionality principle, we have to show that there is a path from
the space R(a,b) to the space proj1 proj1S(a)↝ b in the universe Type, for each a ∶ A
and b ∶ B. By the univalence axiom, it suffices to show that there is an equivalence

R(a,b) ≃ (proj1 proj1S(a)↝ b).

52

Suppose that u ∶ R(a,b). Then there is the path (proj2S(a))(⟨b,u⟩) ∶ ⟨b,u⟩↝ proj1S(a).
The base path of this path is a path from b to proj1 proj1S(a), which we may invert to
obtain the path in the desired direction. Thus, we get the function

τ(a,b) ∶= λu.proj1((proj2S(a))(⟨b,u⟩))−1 ∶ R(a,b)→ (proj1 proj1S(a)↝ b).
Note that both the spaces ∑(b ∶ B), R(a,b) and ∑(b ∶ B), proj1 proj1S(a) ↝ b are
contractible. Therefore, the function ΣBτ(a) is an equivalence. By theorem 2.4.19 it
follows that τ(a) is a fiberwise equivalence, and hence τ induces our path γ0.

Corollary 2.7.11. For any type B, there is an equivalence

B ≃∑(P ∶ B→Type), isContr(∑(b ∶ B), P(b)).
PROOF. Take A ∶= unit in the previous theorem.

2.8 A type theoretical Yoneda lemma
In this section we take the point of view that a dependent type P over a type A is the type
theoretical analogue of a presheaf over A. This seems not like much, since a dependent
type P over A is exactly a function P ∶ A→Type, but it allows us to take the theory of
presheaves as an inspiration for results in homotopy type theory. To manifest this point
of view, we denote the transportation transport(P, p) along a path p in a dependent type
P by P(p). The first result from this direction is a type theoretical variant of the Yoneda
lemma, stating that the fiber P(a) of P above a is equivalent to the space of all local
sections at a of P. In analogy with natural transformations from category theory we
make the following definition:

Definition 2.8.1. If P and Q are dependent types over A, we define

hom(P,Q) =∏(x ∶ A), P(x)→Q(x)
of which the terms are called dependent transformations. We will say that a transforma-
tion σ ∶ hom(P,Q) is an equivalence if σ(x) ∶ P(x)→Q(x) is an equivalence for each
x ∶ A. ⧫

The case where P is the dependent space over A with P(x) = x↝ a for some fixed a
in A is of special importance. We will denote this dependent type by Y(a) to emphasize
on the similarity of the role it plays to the Yoneda embedding of a in the category of
presheaves over A. Indeed, we will soon be able to prove that P(a) ≃ hom(Y(a),P).
We call a transformation from Y(a) to P also a local section of P at a.

Example 2.8.2. If p ∶ a ↝ a′ is a path in A, then there is the transformation Y(p) ∶
hom(Y(a),Y(a′)) defined by λx.λq.p●q. ★

Note that we didn’t require the naturality in our definition of transformations. This
is, however, something that we get for free:

53

Lemma 2.8.3 (Naturality of dependent transformations). Suppose that P and Q
are dependent types over A and that τ ∶ hom(P,Q) is a transformation from P to Q.
Then the diagram

P(x) Q(x)

P(y) Q(y)

τ(x)

P(p) Q(p)

τ(y)

commutes up to homotopy for every path p ∶ x↝ y in A. We define τ(p) ∶=Q(p)○σ(x)
when p ∶ x↝ y and τ ∶ hom(P,Q).

PROOF. Let D(x,y, p) be the type Q(p)○σ(x)↝ σ(y)○P(p). Since P(idx) = idP(x) it
follows that D(x,x, idx) is inhabited by the canonical term d(x) ∶= idσ(x). The assertion
follows now by the induction principle for identity types.

Transformations of dependent types may be composed and just as in the case with
natural transformations this is done pointwise:

Definition 2.8.4. Suppose τ ∶ hom(P,Q) and σ ∶ hom(Q,R) are transformations of de-
pendent types. Then we define the composition σ ○τ ∶ hom(P,R) to be the dependent
function λx.σ(x)○τ(x). For every dependent type P there is a neutral element with re-
spect to this composition, the identity transformation idP, which is defined by λx.idP(x).

For τ ∶ hom(P′,P) we may furthermore define the precomposition map

hom(τ,Q) ∶ hom(P,Q)→ hom(P′,Q)
by λρ.ρ ○τ and for σ ∶ hom(Q,Q′) we may define the postcomposition map

hom(P,σ) ∶ hom(P,Q)→ hom(P,Q′)
by λρ.σ ○ρ . If τ ∶ hom(P′,P) and σ ∶ hom(Q,Q′) are transformations, we define
hom(τ,σ) ∶ hom(P,Q)→ hom(P′,Q′) by λρ.σ ○ρ ○ τ . It is immediate that there are
homotopies

hom(τ,σ)↝ hom(σ ,P′)○hom(Q,τ)
hom(τ,σ)↝ hom(Q′,τ)○hom(σ ,P). ⧫

Lemma 2.8.5 (Yoneda lemma). Assuming function extensionality we have: for any
dependent type P over A and any a ∶ A there is an equivalence

αP,a ∶ hom(Y(a),P) ≃ P(a)

54

for each a ∶ A and P ∶ A→Type. The equivalences αP,a are natural in the sense that
the diagram

hom(Y(a),P) P(a)

hom(Y(a′),P′) P′(a′)

αP,a

hom(Y(p),σ) σ(p)

αP′ ,a′

commutes for every p ∶ a↝ a′ and σ ∶ hom(P,P′).

PROOF. Note that if there is a path p ∶ x↝ y in A, then the spaces P(x) and P(y) are
equivalent. Therefore, we have

hom(Y(a),P) =∏(x ∶ A), (x↝ a)→ P(x)
≃∏(x ∶ A), (x↝ a)→ P(a)
≃ (∑(x ∶ A), x↝ a)→ P(a)
≃ P(a).

We have also used that ∑(x ∶ A), x↝ a is contractible for any a ∶ A. Unfolding these
equivalences, we see that the function

αP,a ∶ hom(Y(a),P)→ P(a)
is given by λτ.τ(a, ida), just as in the original Yoneda lemma. For the naturality
of α , suppose that we have a path p ∶ a↝ a′, a transformation σ ∶ hom(P,P′) and a
transformation τ ∶ hom(Y(a),P). Then

σ(p)(αP,a(τ)) = P′(p)(σ(a,τ(a, ida)))
and

αP′,a′(hom(Y(p),σ)(τ)) = σ(a′,τ(a′, p))
Induction on p reveals that there is a path between these two terms.

Corollary 2.8.6. Taking Y(b) for P we get the equivalence

hom(Y(a),Y(b)) ≃ a↝ b.

Remark 2.8.7. We may put some type theoretical notions in a categorical perspective.
First, the construction of the homotopy fiber may be recognized as an instance of the
comma category construction. When f ∶ A→ B is a function and b is a term of B, we
may think of f as a functor from A to B and then the homotopy fiber hFiber(f ,b) is
analogue to the category f ↓b.

55

Recall from the theory of presheaves that there is an equivalence, given by the
Yoneda lemma, from the comma category Y↓P of pairs (a,τ), consisting of an object
a of A and a natural transformation τ ∶ Y(a)⇒ P, to the category ∫A P of pairs (a,u)
with u ∈ P(a) for any presheaf P on A. There is an equivalence in the same spirit in type
theory, where ∑(a ∶ A), hom(Y(a),P) plays the role of Y↓P and where ∑(a ∶ A), P(a)
takes the role of ∫A P. ★

Corollary 2.8.8. The total space ∑(a ∶ A), P(a) of a dependent space P over A is
equivalent to the total space ∑(a ∶ A), hom(Y(a),P) of of the dependent type of
local sections of P.

2.9 Adjunctions of dependent types
In this section we will introduce the type theoretical variant of adjunctions. The theory
we will develop is directly parallel to that of adjunctions of categories, with the main
differences being that bijections are replaced by equivalences and diagrams which
commute on the nose in category theory are replaced by diagrams which commute up to
homotopy. The main goal in this section is to find three familiar adjunctions of presheaf
theory: ∃ f ⊣ f ∗, f ∗ ⊣ ∀ f and (−)×P ⊣ (−)P

for a function f ∶ A→ B and for a dependent type P. We will develop the theory of type
theoretical adjunctions up to the point where we conclude that adjoints are determined
up to equivalence.

It should be noted that it is probably desirable to formulate adjunctions in more
generality than we do here, using a suitable notion of categories of types, but such a
formulation is not entirely clear to the author at the moment of writing this thesis. We
stick to a notion of adjunction that meets our current needs.

2.9.1 Definition and basic properties of adjunctions

We will use the function extensionality principle throughout this section; often we will
do so without explicit mentioning. Since we will investigate functions from A→Type
to B→Type, it will be useful to start with introducing some notation.

Definition 2.9.1. We denote the type A→Type of dependent types over A by Â. ⧫
Definition 2.9.2. Suppose that A and B are types. A functor of dependent types is a
pair ⟨F0,F1⟩ consisting of a function

F0 ∶ Â→ B̂

transforming the dependent types over A to dependent types over B, and a function

F1 ∶∏{P,P′ ∶ A→Type}, hom(P,P′)→ hom(F0(P),F0(P′))

56

such that F1 preserves idmapP and composition: there are paths

F1(idmapP)↝ idmapF0(P) and F1(σ ○τ)↝ F1(σ)○F1(τ)
for each P,P′,P′′ ∶ A→ Type and each τ ∶ hom(P,P′) and σ ∶ hom(P′,P′′). Often, we
will not distinguish between F0 and F1 in our notation and we will simply write F . ⧫
Definition 2.9.3. If F,G ∶ Â→ B̂ are two functors, a natural transformation from F to
G is a dependent function µ of type∏(P ∶ Â), hom(FP,GP) with the property that the
square

FQ GQ

FP GP

F(τ)

µQ

µP

G(τ)

commutes up to homotopy for each morphism τ ∶ hom(P,Q) of dependent types over A.
The space of natural transformations from F to G is denoted by F ⇒G. ⧫
Definition 2.9.4. For two operations F ∶ Â→ B̂ and G ∶ B̂→ Â we say that F is left
adjoint to G if there are equivalences

Θ(P,Q) ∶ hom(F(P),Q) ≃ hom(P,G(Q))
for every pair of dependent types P ∶ Â and Q ∶ B̂, which are natural in the sense that the
diagram

hom(F(P),Q) hom(P,G(Q))

hom(F(P′),Q′) hom(P′,G(Q′))

≃

hom(F(τ),σ) hom(τ,G(σ))

≃

commutes up to a homotopy Ψ(τ,σ) for every τ ∶ hom(P,P′) and σ ∶ hom(Q,Q′). We
write F ⊣G for the space of such pairs ⟨Θ,Ψ⟩. ⧫

Lemma 2.9.5. For every adjunction F ⊣G, where F ∶ Â→ B̂ and G ∶ B̂→ Â, there
are natural transformations

η ∶ idÂ⇒GF

ε ∶ FG⇒ idB̂.

57

with the property that the triangles

FP FGFP GQ GFGQ

FP GQ

F(ηP)

εFP
idmapFP

ηGQ

G(εQ)
idmapGQ

commute up to homotopy for each P ∶ Â and each Q ∶ B̂. The function η is said to be
the unit of the adjunction and ε is said to be the counit of the adjunction.

PROOF. To define η , note that we have an equivalence

ΘP,FP ∶ hom(FP,FP) ≃ hom(P,GFP)
for each P ∶ A→Type, so we may define ηP ∶= ΘP,FP(idFP). To see that η is a natural
transformation, note that we have the paths

GF(τ)○ΘP,FP(idFP)↝ΘP,FP′(F(τ))↝ΘP′,FP′(idFP′)○τ

from the naturality of Θ. The natural transformation ε is defined similarly, using the
equivalence

ΘGQ,Q ∶ hom(FGQ,Q) ≃ hom(GQ,GQ).
To prove the commutativity of the triangle on the left, we use the naturality once more:

εFP ○F(ηP) =Θ
−1(idGFP)○F(Θ(idFP))↝Θ
−1(idGFP ○Θ(idFP))↝Θ
−1(Θ(idFP))↝ idFP.

The other triangle follows by a similar calculation.

Lemma 2.9.6. Suppose that F ∶ Â→ B̂ has right adjoints G,G′ ∶ B̂→ Â. Then there
is a natural transformation µ ∶ G⇒ G′ such that each µQ ∶ G(Q)→ G′(Q) is an
equivalence.

PROOF. Suppose that Q ∶ B→Type and that a ∶ A. Then we have, by the Yoneda lemma,
the equivalences

G(Q)(a) ≃ hom(Y(a),G(Q)) ≃ hom(F(Y(a)),Q) ≃ hom(Y(a),G′(Q)) ≃G′(Q)(a).
The naturality follows from the naturality of the Yoneda lemma.

Lemma 2.9.7. Suppose that G ∶ B̂→ Â has left adjoints F,F ′ ∶ Â→ B̂. Then there
is a natural transformation µ ∶ F ⇒ F ′ such that each µP ∶ F(P)→ F ′(P) is an
equivalence.

58

PROOF. Suppose that ⟨Θ,Ψ⟩ ∶ F ⊣ G and that ⟨Θ′,Ψ′⟩ ∶ F ′ ⊣ G. Then we have the
equivalence

ΘP,F′P ∶ hom(FP,F ′P) ≃ hom(P,GF ′P)
and hence we find Θ

−1(η ′
P) ∶ hom(FP,F ′P), where η ′ is the unit of the adjunction F ′ ⊣

G. Similarly, we find Θ
′−1(ηP) ∶ hom(F ′P,FP). To prove that Θ

′−1(ηP)○Θ
−1(η ′

P)↝
idFP, note that it suffices to show that Θ(Θ

′−1(ηP)○Θ
−1(η ′

P))↝ ηP. This is just the
same calculation as in the categorical argument:

Θ(Θ
′−1(ηP)○Θ

−1(η ′
P))↝ ηP↝GΘ

′−1(ηP)○η ′
P=GΘ

′−1(ηP)○Θ
′(idF′P)↝Θ

′(Θ
′−1(ηP)○ idF′P)↝ ηP

The proof that there is a homotopy Θ
−1(η ′)○Θ

′−1(ηP) ∼ id is similar. The naturality
of the maps λP.Θ−1(η ′

P) and λP.Θ′−1(ηP) follows from the naturality of Θ, Θ
′, η and

η ′.
Corollary 2.9.8. Suppose that F,G ∶ (B→Type)→ (A→Type) have right adjoints
RF and RG respectively. If

∏(b ∶ B), F(Y(b)) ≃G(Y(b))
then F(Q) ≃G(Q) for every Q ∶ B→Type.

PROOF. We will show that RF ≃ RG. It is then an immediate consequence that F ≃ G.
Suppose that P ∶ A→Type and that b ∶ B. Then we have

RF(P)(b) ≃ hom(Y(b),RF(P)) ≃ hom(F(Y(b)),P) ≃ hom(G(Y(b)),P) ≃ RG(P)(b).

2.9.2 Existential and universal quantification of dependent types

We will now begin with proving the three adjunctions we stated at the beginning of this
section. The arguments will be more type theoretical from now on.

Definition 2.9.9. Suppose that f ∶ A→ B is a function. Then we define the functor
f ∗ ∶ B̂→ Â by substitution along f , i.e. f ∗(Q)(x) ∶= Q(f (x)) for x ∶ A and Q ∶ B̂. If
τ ∶ hom(Q,Q′) is a transformation of dependent types, we define

f ∗(τ) ∶= λx.λu.τ(f (x),u).
It is immediate that f ∗ defines a functor. ⧫
Definition 2.9.10. Suppose that f ∶ A→ B is a function. Then we define the functor∃ f ∶ Â→ B̂ by ∃ f (P)(b) =∑(x ∶ A), (f (x)↝ b)×P(x).

59

For τ ∶ hom(P,P′) we define

∃ f (τ) ∶= λb.λ ⟨x, p,u⟩.⟨x, p,τ(x,u)⟩. ⧫
Remark 2.9.11. Consider the projection proj1 ∶ B×Y → B. Then

∃proj1(P)(b) =∑(⟨b′,y⟩ ∶ B×Y), (b′↝ b)×P(b′,y)
≃∑(b′ ∶ B)(y ∶Y), (b′↝ b)×P(b,y)
≃∑(y ∶Y), P(b,y)×(∑(b′ ∶ B), b′↝ b)
≃∑(y ∶Y), P(⟨b,y⟩).

We have used the result from lemma 2.3.16 that the space ∑(b′ ∶ B), b′ ↝ b is con-
tractible. What this shows is that ∃ f is equivalent to our original dependent sum when f
is a projection. ★

Lemma 2.9.12. The functor ∃ f is left adjoint of the functor f ∗.

PROOF. Suppose that P ∶ Â and that Q ∶ B̂. We will first show that

Θ ∶ hom(∃ f (P),Q) ≃ hom(P, f ∗(Q)).
The proof uses the equivalence of lemma 2.6.3 and the Yoneda lemma 2.8.5.

hom(∃ f (P),Q) =∏(b ∶ B), (∑(a ∶ A), (f (a)↝ b)×P(a))→Q(b)
≃∏(b ∶ B)(a ∶ A), ((f (a)↝ b)×P(a))→Q(b)
≃∏(a ∶ A), P(a)→∏(b ∶ B), (b↝ f (a))→Q(b)
≃∏(a ∶ A), P(a)→Q(f (a))= hom(P, f ∗(Q)).

By unfolding the definitions of the equivalences involved, we see that the equivalence
we constructed is given by

λ µ.λa,u.µ(f (a),⟨a, id f(a),u⟩).
Using this presentation of Θ, verifying its naturality is a short but a bit messy calcula-
tion.

Definition 2.9.13. Suppose that f ∶ A→ B is a function. Define the functor ∀ f ∶ Â→ B̂
by ∀ f (P)(b) =∏(a ∶ A), (f (a)↝ b)→ P(a)
On transformations τ ∶ hom(P,P′), we define ∀ f by

∀ f (τ) ∶= λb,s.τ ○ s. ⧫

60

Remark 2.9.14. Again, we may consider the map proj1 ∶ B×Y → B to verify that∀proj1(P)(b) ≃∏(y ∶Y), P(b,y).

∀proj1(P)(b) =∏(⟨b′,y⟩ ∶ B×Y), (b′↝ b)→ P(b′,y)
≃∏(b′ ∶ B)(y ∶Y), (b′↝ b)→ P(b,y)
≃ (∑(b′ ∶ B), b′↝ b)→∏(y ∶Y), P(b,y)
≃∏(y ∶Y), P(b,y).

Thus, ∀ f generalizes the original dependent product construction. ★
Lemma 2.9.15. For all P ∶ A→Type and Q ∶ B→Type we have the equivalence

hom(f ∗(Q),P) ≃ hom(Q,∀ f (P)).
PROOF. Suppose that P ∶ Â and that Q ∶ B̂. We will first show that we have an equivalence

Θ ∶ hom(Q,∀ f (P)) ≃ hom(f ∗(Q),P).
As in the proof of the ∃ f ⊣ f ∗ adjunction, we use several known equivalences:

hom(Q,∀ f (P)) =∏(b ∶ B), Q(b)→∏(a ∶ A), (f (a)↝ b)→ P(a)
≃∏(a ∶ A)(b ∶ B), Q(b)→ (f (a)↝ b)→ P(a)
≃∏(a ∶ A), (∑(b ∶ B), Q(b)×(f (a)↝ b))→ P(a)
≃∏(a ∶ A), Q(f (a))×(∑(b ∶ B), f (a)↝ b)→ P(a)
≃∏(a ∶ A), Q(f (a))→ P(a)= hom(f ∗(Q),P).

Unfolding the definitions of the equivalences that we have used here, we get that Θ is
the function

λ µ.λa,u.µ(f (a),u)(a, id f(a)),
which is natural by a messy but not complicated calculation.

2.9.3 Exponentiation of dependent types

Definition 2.9.16. Suppose that P is a dependent type over A. We define the functor(−)×P ∶ Â→ Â by (Q×P)(x) ∶= P′(x)×P(x).
If τ ∶ hom(Q,R) is a transformation of dependent types, we define τ ×P ∶ hom(Q×P,R×
P) by

λx,⟨u,v⟩.⟨τ(x,u),v⟩. ⧫

61

Definition 2.9.17. Suppose that P is a dependent type over A. We define the functor(−)P ∶ Â→ Â by

QP(a) = hom(Y(a)×P,Q).
If τ ∶ hom(Q,R) is a transformation of dependent types, we define τP ∶ hom(QP,RP) by

λx, f .τ ○ f .

Since (−)P is defined by post-composition, it is immediate that it is functorial. ⧫
Lemma 2.9.18. The functor (−)P is right adjoint to the functor (−)×P.

PROOF. Suppose that Q,R ∶ Â. We will first show that there is an equivalence

Θ ∶ hom(R×P,Q) ≃ hom(R,QP).
Note that if there is a path from y to x, then the spaces P(y) and P(x) are equivalent.
Thus we can make the following calculation using basic equivalences:

hom(R,QP) =∏(x ∶ A), R(x)→ hom(Y(x)×P,Q)
=∏(x ∶ A), R(x)→ (∏(y ∶ A), (y↝ x)×P(y)→Q(y))
≃∏(x ∶ A), R(x)→ (∏(y ∶ A), (y↝ x)×P(x)→Q(y))
≃∏(x ∶ A), R(x)→ P(x)→ (∏(y ∶ A), (y↝ x)→Q(y))
≃∏(x ∶ A), R(x)×P(x)→Q(x)= hom(R×P,Q).

Unfolding this equivalence, we get

λ µ.λx,⟨v,u⟩.µ(x,v,x, idx,u)
which can seen to be natural by a calculation only involving folding and unfolding the
definitions.

Remark 2.9.19. That the categorical definition of exponentiation doesn’t fail is no
surprise. But actually we could get exponentiation for free by defining P→Q to be the
dependent type over A given by (P→Q)(a) ∶= P(a)→Q(a). The correspondence

hom(R,P→Q) ≃ hom(R×P,Q)
is then immediate. By taking R to be Y(a) and using the Yoneda lemma, we get

(P→Q)(a) ≃ hom(Y(a),P→Q) ≃ hom(Y(a)×P,Q) =QP(a).
Hence the dependent types P→Q and QP are equivalent, which comes down to the fact
that we could have gotten away with the naive approach regarding exponentiation. ★

62

3. HIGHER INDUCTIVE TYPES

In this chapter we begin with our investigation of higher inductive types. Our approach
has a similar spirit to that of ordinary inductive types: we define a type by specifying its
points and paths and then state the induction principle as a minimality principle. And
also in the case of higher inductive types the induction principle states that there is a
section of every dependent type that resembles the structure of the basic constructors.

It is rather simple to introduce the basic constructors in such a way that you get the
space you want. In the case of the interval you take two points and connect them with a
path. In the case of the circle you take one point and a path that begins and ends in that
point. The harder part is to define the induction principle. We will explain how to get
the induction principle when the constructors are easy but reasonably general but we
do not have a general principle yet to define all the higher inductive types. Therefore it
becomes important that we show that the types we have defined inductively are indeed
determined uniquely up to equivalence. We prove this fact by proving a correspondence
theorem for each of the higher inductive types we define: the space of sections of a
dependent type over the higher inductive type is equivalent to the space of data which is
needed to apply the induction principle for constructing a section. This correspondence
theorem is a dependent version of the statement that the higher inductive type is initial
in a certain sense. From this point of view, higher inductive types are like colimits.

3.1 The idea of higher inductive types
The inductive types we have seen so far have all in common that they are given by
specifying their points and the property that towards everything else which also models
this structure of points there is a function from the inductively defined space. This
idea allowed us to construct a great deal of spaces, but with identity types around the
story doesn’t end here. What if we can also specify certain paths of a space. And paths
between paths, i.e. 2-cells. And even higher cells, or maybe cells at each level. It would,
for example, allow us to define an interval or a circle, a sphere, a torus, a Klein bottle
and many more spaces. The circle could be given as a type which consists of a point and
a (non-identity) path from that point to itself. The sphere would consist of a point and a
2-cell from the identity path on that point to itself. The difficulty with higher inductive
spaces is not to give the basic constructors, i.e. the points and the paths. The difficulty is
rather to formulate the induction principle which it has to satisfy. In this section we will
do the preliminary work that allows us to state the induction principles for inductive
spaces with paths as basic constructors and work with them.

In dependent type theory, induction principles are formulated as the existence of a
section of a dependent type when that dependent type resembles the structure of the
defined space. In the case of higher inductive spaces, the idea is exactly the same.
Suppose that a space A has a path p ∶ x↝ y and that f ∶∏(x ∶ A), P(x) is a section of
a dependent type over A. Then there is the path f (p) ∶ p ⋅ f (x)↝ y in P(y). Thus, if

63

we want to define a section f of P with the property f (x)↝ u and f (y)↝ v for some
u ∶ P(x) and v ∶ P(y), then there should be a path from p ⋅u↝ v.

Lemma 3.1.1. Suppose that f ,g ∶∏(x ∶ A), P(x) are sections of a dependent type
P over A and consider the dependent type Q over A given by

Q(x) ∶= f (x)↝ g(x),
so that the sections of Q are homotopies from f to g. The square

f (y) g(y)

p ⋅ f (x) p ⋅g(x)

Q(p)(q)

f(p)−1

P(p)(q)

g(p)

commutes for every path p ∶ x↝ y in A and every q ∶Q(x).

PROOF. This is immediate with induction on p.

Lemma 3.1.2. Suppose that P is a dependent space over A, that p ∶ x↝ y is a path in
A and consider the dependent type Q over P(x)×P(y) given by Q(a,b) ∶= p ⋅a↝ b.
For α ∶ u↝ u′ in P(x) and β ∶ v↝ v′ in P(y) we have

α ⋅q↝ q●P(p)(α)−1

β ⋅q↝ β ●q

for each q ∶ Q(u,v). In the case that Q is the dependent type over P(x) given by
Q(u) ∶= p ⋅u↝ u, we have

α ⋅q↝ α ●q●P(p)(α)−1

for α ∶ u↝ u′ and q ∶Q(u).

PROOF. All the paths can be found with double induction.

All the induction principle will be stated in a dependent form, but it will be useful to
state (and prove) a non-dependent version as well. The following lemma is our main
tool to pass from a dependent induction principle to a non-dependent one. It asserts
that if P is a constant dependent type, if P = λx.B for some type B, then transportation
doesn’t really do something.

Lemma 3.1.3. Suppose that A and B are types and consider the constant dependent
type P ∶= λx.B over A. Then there is a path u↝ p ⋅u in B for any term u ∶ B and any

64

path p ∶ x↝ y in A. Moreover, if q ∶ u↝ v is a path in B, then the square

u v

p ⋅u p ⋅v

q

p ⋅q

commutes.

PROOF. Immediate with induction over p.

3.2 Examples of some inductive types with paths
With the ideas that were presented as a motivation for the inductive definition of the
circle, we may continue to define other higher inductive types as well. We will cook up
a definition of the interval, the real line, the 2-sphere and the torus. We begin with the
interval.

3.2.1 The interval

Definition 3.2.1. The interval I is defined as an inductive space with basic constructors
zero,one ∶ I and s ∶ zero↝ one. The induction principle for the interval is that whenever
we have

P ∶ I→Type v ∶ P(one)
u ∶ P(zero) p ∶ s ⋅u↝ v

then there is a section R ∶∏(t ∶ I), P(x) of P with the property that there are paths
α ∶ R(zero)↝ u and β ∶ R(one)↝ v and a path γ witnessing that the square

R(one) v

s ⋅R(zero) s ⋅u
R(s)

β

s ⋅α

p

commutes. ⧫
There is of course also a non-dependent version of the induction principle.

Lemma 3.2.2. If A is a type and p ∶ x↝ y is a path in A, then there is a function

65

f ∶ I→ A with the property that f (zero)↝ x, f (one)↝ y and such that the square

x y

f (zero) f (one)

p

f(s)

commutes.

PROOF. Suppose we have a type A and a path p ∶ x↝ y in A. Let P be the dependent
type over I given by λ t.A. Then we have x ∶ P(zero) and y ∶ P(one). Since there is a
canonical path q ∶ s ⋅x↝ x in P(y), we get a path s ⋅x↝ y. The induction principle for
the interval now gives us a function f ∶ I→ A for which there are paths

α ∶ s ⋅ f (zero)↝ x and β ∶ s ⋅ f (one)↝ y

and a witness γ of the commutativity of the square

f (one) y

s ⋅ f (zero) s ⋅x
f(s)

β

s ⋅α

p●q

The commutativity of the diagram in the statement now follows from lemma 3.1.3.

Theorem 3.2.3 (Correspondence theorem). For any dependent space P over the
interval, the space of sections of P is equivalent to the space

Constr(P) ∶=∑(u ∶ P(zero))(v ∶ P(one)), s ⋅u↝ v

of initial data for the induction principle of the interval.

PROOF. Suppose that P is a dependent space over the interval. Every section f of P
determines the triple ⟨ f (zero), f (one), f (s)⟩ of Constr(P) and the induction principle
defines a map from Constr(P) to the space of sections of P. Denote these maps by ϕ
and ψ respectively. We have to verify that ψ(ϕ(f))↝ f for every section f of P and
that ϕ(ψ(u,v, p))↝ ⟨u,v, p⟩ for every triple ⟨u,v, p⟩ in Constr(P).

First we check that ψ(ϕ(f))↝ f and we denote ψ(ϕ(f)) by f̃ . Thus, we need to
find a term of the space ∏(t ∶ I), f̃ (t)↝ f (t).
We will do this using the induction principle for the interval, using the dependent type Q
over I given by Q(t) ∶= f̃ (t)↝ f (t). A path α from f̃ (zero)↝ f (zero) is given by the

66

induction principle (remember that f̃ is defined by the induction principle), just like a
path β from f̃ (one) to f (one). It is left to find a path from s ⋅α =Q(s)(α) to β . From
lemma 3.1.1 we know that there is a path

Q(s)(α)↝ f (s)●P(s)(α)● f̃ (s)−1

A path from the latter to β is then given by a modification of γ . We have gathered all
the information necessary to apply the induction principle, so we conclude that there is
a path f̃ (x)↝ f (x) for each x in the interval, and hence that ψ ○ϕ ∼ idmap.

For the path ϕ ○ψ ∼ idmap, i.e. that ϕ(ψ(w))↝ w for each w ∶ Constr(P). Note
that, by the induction principle for dependent sums, it suffices to show that

ϕ(ψ(⟨u,v, p⟩)↝ ⟨u,v, p⟩
for each u ∶ P(zero), v ∶ P(one) and that p ∶ s ⋅u↝ v. Since R ∶= ϕ(⟨u,v, p⟩) is defined by
the induction principle, there are paths

α ∶ R(zero)↝ u, β ∶ R(one)↝ v and γ ∶ β ●R(s)●(s ⋅α)−1↝ p.

To show that ϕ(R)↝ ⟨u,v, p⟩, it is only left to show that there is a path β ⋅(α ⋅R(s))↝ p.
Such a path is constructed from γ and an application of lemma 3.1.2.

Corollary 3.2.4. Suppose that A is a type. Then the space of functions I→ A is
equivalent to the space ∑(x,y ∶ A), x↝ y

Recall that we have already seen in lemma 2.7.5 that the spaces A and ∑(x,y ∶
A), x↝ y are equivalent. So the above corollary has the consequence that (I→ A) ≃ A.
Such an equivalence holds also for unit, which is a hint that the interval is contractible.

Lemma 3.2.5. The interval is contractible.

PROOF. Consider the dependent type P over the interval given by P(x) = x↝ one. Then
s ∶ P(zero) and idone ∶ P(one). The lemma is proven once we have found a section of P.
To apply the induction principle for the interval in order to show the existence of such a
path, we need a path from s ⋅ s to idone in P(one). This path is given by lemma 2.2.9.

Since the interval is contractible, introducing it does not bring a lot of new things
to type theory. But that changes if we introduce a variant of the interval where the
conversion rules are stated in a definitional form. An observation of Mike Shulman2 has
revealed that a definitional interval implies the naive function extensionality principle.

Definition 3.2.6. We define the type I inductively with basic constructors

zero, one ∶ I and s ∶ zero↝ one.

2http://homotopytypetheory.org/2011/04/04/an-interval-type-implies-
function-extensionality/

67

http://homotopytypetheory.org/2011/04/04/an-interval-type-implies-function-extensionality/
http://homotopytypetheory.org/2011/04/04/an-interval-type-implies-function-extensionality/

The induction principle for I is that for every dependent type P over I for which there
are

u ∶ P(zero), v ∶ P(one) and p ∶ s ⋅u↝ v,

there is a section R ∶∏(t ∶ I), P(t) with the property that

R(zero) = u, R(one) = v and R(s) = p. ⧫
We state the non-dependent induction principle without proof. The proof is similar

as in the propositional case, but without the complications that came from the fact that
the computation rule was intensional instead of definitional.

Lemma 3.2.7. For every type A and every path p ∶ x↝ y in A there is a function
f ∶ I→ A with the property that f (zero) = x, f (one) = y and f (s) = p.

Theorem 3.2.8. Suppose that f ,g ∶∏(x ∶ A), P(x) are sections of a dependent type
P over A. There is a function

(f ∼ g)→ (f ↝ g).
PROOF. For each x ∶ A, there is a function mx ∶ (f (x)↝ g(x))→ I→ P(x) with the
property that mx(p,s) = p for each p ∶ f (x)↝ f (y). Hence there is a function

m ∶ (f ∼ g)→∏(x ∶ A), I→ P(x).
Moreover, we have

k ∶= λϕ.λ t.λx.ϕ(x,t) ∶ (∏(x ∶ A), I→ P(x))→ (I→∏(x ∶ A), P(x))
Then k(m(H))(s) is a path from f to g for any homotopy H ∶ f ∼ g.

3.2.2 The circle

We also present the circle as a higher inductive space, following the same ideas with
which we formulated the interval as an inductive space. The idea of defining the circle
as an inductive space has been considered at the Oberwolfach workshop in 2011 on
homotopy type theory and has been written down first by Peter Lumsdaine on the
homotopy type theory blog3.

As we have done with the interval, we will show a correspondence theorem for the
circle and derive it’s uniqueness from it. Also, we will show that the circle is contractible
if and only if for any type A and any two paths p,q ∶ x↝ y in A there is a path s ∶ p↝ q.
This last condition is known as the principle of Uniqueness of identity proofs.

3http://homotopytypetheory.org/2011/04/24/higher-inductive-types-a-
tour-of-the-menagerie/

68

http://homotopytypetheory.org/2011/04/24/higher-inductive-types-a-tour-of-the-menagerie/
http://homotopytypetheory.org/2011/04/24/higher-inductive-types-a-tour-of-the-menagerie/

Definition 3.2.9. We define the type circle inductively with basic constructors

base ∶ circle and loop ∶ base↝ base.

The induction principle for the circle is that whenever P is a dependent type over circle
for which there are

u ∶ P(base)
α ∶ loop ⋅u↝ u

there is a section R(u,α) ∶∏(t ∶ circle), P(t) of P for which there are paths B(u,α) ∶
R(u,α,base)↝ u and a path L(u,α) witnessing the commutativity of the square

R(u,α,base) u

loop ⋅R(u,α,base) loop ⋅u

B(u,α)

R(u,α)(loop)

(loop ⋅B(u,α))−1

α

⧫
Lemma 3.2.10. Suppose A is a type and for x ∶ A there is a path p ∶ x↝ x. Then
there is a function f ∶ circle→ A for which we have a path B ∶ f (base)↝ x and a
commutative square

f (x) x

f (x) x

f(loop)

B

B−1

p

PROOF. We will use the induction principle for the circle to define f . Denote by P the
dependent type λ t.A, take x ∶ P(base). By lemma 3.1.3 there is a path α ∶ loop ⋅x↝ x.
So the induction principle gives us a section f ∶ circle→ A of P for which there are paths
B ∶ f (base)↝ x and a commutative square

f (x) x

loop ⋅ f (x) loop ⋅x
f(loop)

B

(loop ⋅B)−1

α

The commutativity of the asserted square now follows from lemma 3.1.3.

69

Theorem 3.2.11 (Correspondence theorem). For any dependent type P over the
circle, the space∏(t ∶ circle), P(t) of sections of P is equivalent to the space

Constr(P) ∶=∑(u ∶ P(base)), loop ⋅u↝ u

of initial data for the induction principle for the circle.

PROOF. For each section f ∶∏(t ∶ circle), P(t) of P we get the pair

ϕ(f) ∶= ⟨ f (base), f (loop)⟩
in Constr(P). The induction principle gives a section ψ(u, p) for each pair ⟨u, p⟩ in
Constr(P). Thus, we need to show that ψ ○ϕ ∼ idmap and that ϕ ○ψ ∼ idmap.

Denote ψ(ϕ(f)) by f̃ , we will verify that there is a homotopy from f̃ to f , i.e.

∏(t ∶ circle), f̃ (t)↝ f (t)
We prove this with the induction principle for the circle, using the dependent type
Q over the circle given by Q(t) ∶= f̃ (t) ↝ f (t). Since f̃ is obtained from the pair⟨ f (base), f (loop)⟩ by induction, there are paths

α ∶ f̃ (base)↝ f (base)
β ∶ α ● f̃ (loop)●P(loop)(α)−1↝ f (loop)

Note that lemma 3.1.1 gives a path

Q(loop)(α)↝ f (loop)●P(loop)(α)● f̃ (loop)−1,

so a path from loop ⋅α = Q(loop)(α)↝ α is obtained with a slight modification of β .
Therefore, the induction principle for the circle gives indeed a homotopy from f̃ to f .
By the function extensionality principle, we get a path ϕ(ψ(f))↝ f .

Now suppose that u ∶ P(base) and that p ∶ loop ⋅ u ↝ u. This gives the section
f ∶=ψ(u, p) of P for which there are paths

α ∶ f (base)↝ u and β ∶ α ● f (loop)●P(loop)(α)−1↝ p.

By lemma 2.2.14, we get a path from ⟨ f (base), f (loop)⟩ to ⟨u, p⟩ from the path α
and a path from α ⋅ f (loop) to p. By lemma 3.1.2 we have α ⋅ f (loop)↝ α ● f (loop)●
P(loop)(α)−1. From the latter there is a path to p by β . This finishes the proof of the
homotopy from ϕ ○ψ to idmap.

Corollary 3.2.12. For any type A we have an equivalence

(∑(x ∶ A), x↝ x) ≃ (circle→ A).
The following result was first proved by Guillaume Brunerie.

70

Lemma 3.2.13. Suppose that C is a type which has a term b ∶C and a path l ∶ b↝ b
and that C has the property that for every dependent type P over C with

u ∶ P(b) and α ∶ l ⋅u↝ u

there is a section f ∶∏(t ∶C), P(t) for which there are paths B ∶ f (b)↝ u and
L ∶ B● f (l)● l ⋅B↝ α . Then C is equivalent to circle.

PROOF. Since C satisfies the same induction principle as the circle, an immediate
adjustment of corollary 3.2.12 gives equivalences

(∑(x ∶ A), x↝ x) ≃C→ A

for each type A. Hence the pair ⟨base, loop⟩ determines a function f ∶C→ circle with the
property that there are paths β ∶ f (b)↝ base and β ⋅ f (l)↝ loop. Also, the pair ⟨b, l⟩
determines a function g ∶ circle→C with the property that there are paths γ ∶ g(base)↝ b
and γ ⋅ f (loop)↝ l.

To verify that g○ f ∼ idmapC, note that the homotopy fiber of the mentioned equiv-
alence are contractible. Hence it suffices to verify that g○ f is in the homotopy fiber
of the pair ⟨b, l⟩, which corresponds to the identity map on C. For this, it is enough to
check that ⟨g(f (b)),g(f (l))⟩↝ ⟨b, l⟩, which follows straight from the stated properties
of f and g. The homotopy f ○g ∼ idmapcircle follows by swapping the roles of C and
circle.

3.2.3 An alternative circle

In this subsection we will look at an alternative definition of the circle, which looks like
this

The only thing which we show about this circle is that it is equivalent to the original
circle. Nevertheless, we will define n-spheres for arbitrary n in section 3.6. The 1-sphere
will be this version of the circle.

Definition 3.2.14. We define the type circle′ inductively with basic constructors

a,b ∶ circle′ and p,q ∶ a↝ b

The induction principle for circle′ is that whenever P is a dependent type over circle′ for
which there are

u ∶ P(a) α ∶ p ⋅u↝ v

v ∶ P(b) β ∶ q ⋅u↝ v,

71

then there is a section S ∶∏(x ∶ circle′), P(x) for which there are paths

Ca ∶ S(a)↝ u and Cb ∶ S(b)↝ v

and paths Kp and Kq witnessing the commutativity of the diagrams

S(b) v S(b) v

p ⋅S(a) p ⋅u q ⋅S(a) q ⋅u(p ⋅Ca)−1

S(p)

Cb

α

(q ⋅Ca)−1

S(q)

Cb

β

⧫
Lemma 3.2.15. The types circle and circle′ are equivalent.

PROOF. Define base′ ∶= a and loop′ ∶= q−1 ●p. We will show that circle′ satisfies the
induction principle of circle with this base point and loop.

Suppose that P is a dependent type over circle′, that u ∶ P(base′) and that α ∶
loop′ ⋅u↝ u. To find a section of P, we wish to apply the induction principle for circle′,
so we must find an element v ∶ P(b) and paths p ⋅u↝ v and q ⋅u↝ v. We take v ∶= p ⋅u,
which gives us the identity path p ⋅u↝ v. Recall from lemma 2.2.5 that there is a function
mvTransp(q−1) ∶ (u↝ q−1 ⋅v)→ (q ⋅u↝ v). Now note that we have a canonical path

q−1 ⋅v = q−1 ⋅(p ⋅u)↝ (q−1 ●p) ⋅u
given by tc(q−1,p,u). From the latter there is a path to u by assumption. This completes
the induction argument, and hence there is a section S of P for which there are paths

Ca ∶ S(a)↝ u and Cb ∶ S(b)↝ p ⋅u
and paths Kp and Kq witnessing the commutativity of the squares

S(b) p ⋅u S(b) p ⋅u

p ⋅S(a) p ⋅u q ⋅S(a) q ⋅u(p ⋅Ca)−1

S(p)

Cb

idp⋅u

(q ⋅Ca)−1

S(q)

Cb

ϕ(α ● tc(q−1,p,u))

Since we have Ca ∶ S(base′)↝ u, it is left to check that the diagram

S(a) u

(q−1 ●p) ⋅S(a) (q−1 ●p) ⋅u
((q−1 ●p) ⋅Ca)−1

S(q−1 ●p)

Ca

α

72

commutes. Recall from lemma 2.2.4 that there is a path

S(q−1 ●p)↝ S(q−1)●S(p)● tc(q−1,p,S(a))−1

3.3 The fundamental groupoid of the circle
In this section we present the result of Mike Shulman that the univalence axiom implies
that the fundamental groupoid of the circle is the integers. The approach here to the
notion of fundamental groupoid is quite ad hoc, we will actually show that the space
base↝ base is equivalent to the type Z of integers.

3.3.1 The type of integers

Definition 3.3.1. We define the type Z as an inductive space with basic constructors

0 ∶Z
pos ∶N→Z
neg ∶N→Z.

The induction principle for the integers is that whenever P is a dependent type over Z
for which there are

u ∶ P(0)
k ∶∏(n ∶N), P(pos(n))
l ∶∏(n ∶N), P(neg(n))

then there is a section f of P such that f (0) = u, f (pos(n)) = k(n) and f (neg(n)) =
l(n). ⧫

Note that in this definition we should think of pos(0) as 1 and of neg(0) as −1. This
is just a minor complication compared to those which arise from the definition of pairs
of natural numbers identified appropriately, which the person with the set theoretical
approach in mind might be inclined to give.

Lemma 3.3.2. There is an equivalence succ ∶ Z ≃ Z mapping each integer to its
successor.

PROOF. We will use the induction principle for Z. Define succ(0) ∶= pos(0) and define
succ(pos(n)) ∶= pos(S(n)). For the negative integers we use induction on N: define
succ(neg(0)) ∶= 0 and succ(neg(S(n))) ∶= neg(n).

The inverse of succ is the function pred ∶Z→Z, which is defined in the same way
as succ but with the roles of pos and neg interchanged. One might readily check that
this gives a homotopy inverse of succ.

Another fact about Z is that it is a set. We state this property but omit the proof.

Theorem 3.3.3. The type Z of natural numbers forms a set: for any p,q ∶ a↝ b
there is a path s ∶ p↝ q.

73

3.3.2 The universal covering of the circle

In the following lemma we construct a function Z→ (base↝ base) which maps an
integer a to the loop loopa.

Lemma 3.3.4. There is a function wind ∶ Z→ (base↝ base) mapping pos(0) to
loop.

PROOF. Define wind(0) ∶= idbase, define wind(pos(0)) ∶= loop and define

wind(pos(S(n))) ∶= wind(pos(n))● loop.

On the negative integers define wind(neg(0)) ∶= loop−1 and

wind(neg(S(n))) ∶= wind(neg(n))● loop−1.

To show that (base↝ base) ≃Z, we first need the universal cover of the circle. The
universal cover is a dependent type over the circle, which we will define using the
induction principle for the circle. Note that to give a dependent type over the circle, it
suffices to give a type X above the base point and a path from X to X . This is where the
univalence axiom comes in: to give a path from X to X it suffices to give an equivalence
from X to X .

Definition 3.3.5. The universal cover U ∶ circle→Type is the dependent type defined
by U(base) ∶=Z and the loop υ(Z,Z)−1(succ) ∶Z↝Z. ⧫

Lemma 3.3.6. For any integer a, there is a path wind(a) ⋅a↝ 0, where the transport
is taken with respect to U.

PROOF. Since wind(0) = idbase it is immediate that there is a path wind(0) ⋅0↝ 0. Since
wind(pos(0)) = loop

Theorem 3.3.7. The total space ∑(t ∶ circle), U(t) of the universal covering of the
circle is contractible.

PROOF. As the center of contraction, we take the pair ⟨base,0⟩. To prove the asserted
contractibility, it therefore suffices to show that there is a function ϕ of type

∏(t ∶ circle)(a ∶U(t)), ⟨t,a⟩↝ ⟨base,0⟩,
which we find using the induction principle of the circle. First, we need to find a function
of type ∏(a ∶Z), ⟨base,a⟩↝ ⟨base,0⟩.
For a ∶Z, such a path is given by wind(a)−1 as the base path and the path from lemma
3.3.6 as the fiber path. Thus we get the desired function ϕ . It is left to find a path from
loop ⋅ϕ to ϕ . The following lemma tells us how to evaluate the function loop ⋅ϕ:

74

Lemma 3.3.8. Suppose that P is a dependent type over a type A. For any x ∶ A and
u ∶ P(x) define the dependent type Q ∶ A→Type by

Q(y) ∶=∏(v ∶ P(y)), ⟨y,v⟩↝ ⟨x,u⟩.
Then the triangle

⟨y′,v⟩ ⟨x,u⟩

⟨y, p−1 ⋅v⟩

(p ⋅ f)(v)

p−1
Σ
(v)

f(p−1 ⋅ v)

commutes for every path p ∶ y↝ y′ in A, every f ∶Q(y) and every v ∶ P(y′). Recall
lemma 2.1.8 for the definition of pΣ(u).

PROOF. Immediate by induction on p.

Thus, we see that there is a path

(loop ⋅ϕ)(a)↝ ϕ(loop−1 ⋅a)● loop−1
Σ(a)

for every a ∶ Z. Note that the base path of ϕ(loop−1 ⋅ a) ● loop−1
Σ (a) is identical to

wind(pred(a))−1 ● loop−1. Induction on a reveals that the latter path is identical to
wind(a)−1. The fiber paths are identical since Z is a set. This finishes the proof that∑(t ∶ circle), U(t) is contractible.

Theorem 3.3.9. There is a transformation τ ∶∏(t ∶ circle), U(t)→ Y(base). Since
both ∑(t ∶ circle), U(t) and ∑(t ∶ circle), Y(base)(t) are contractible, it follows
immediately that

Z =U(base) ≃ Y(base)(base) = base↝ base.

PROOF. We already have the function wind ∶Z→ (base↝ base). Therefore, it is only
left to show that loop ⋅wind↝wind. A general argument gives that

loop ⋅wind↝ Y(base)(loop)○wind○U(loop).
Thus, we have to show that there is a path

wind(succ(a))● loop−1↝wind(a)
for any integer a. This is immediate with induction on a.

75

3.4 Basic properties of paths between paths
The main aim of this section is to develop those properties which are needed to give an
inductive definition of a space which has paths of paths, i.e. 2-cells, among the basic
constructors. We want to know how homotopies of sections of dependent types behave
with respect to paths of paths. In the case of paths, we saw that the essential property
was that the diagram

f (y) g(y)

p ⋅ f (x) p ⋅g(x),
f(p)

α(y)

p ⋅α(x)

g(p)

commutes for any α ∶ f ↝ g. The analogous commuting diagram, which we will derive
in (5), is

(α ⋅ f↝)(q) g↝(q)

s ⋅((α ⋅ f↝)(p)) s ⋅g↝(p).

α̃(q)

(α ⋅ f↝)↝(s)

s ⋅ α̃(p)

g↝↝(s)

However, the situation complicates at this point, since in this diagram α appears in it’s
bounded form, e.g. in the transportation α ⋅ f↝. The transportation is there because
f↝(q) ∶ q ⋅ f (x)↝ f (y) is not in the same space as g↝(q) ∶ q ⋅g(x)↝ g(y). In its tied
form, α is not applicable in the inductive definition of a space because there we need to
express how a section induced by some data agrees with that data. These data do not
come from a section, so we need to say separately for every component of the data how
the induced section agrees with it. We will see that we can replace diagram (5) with two
diagrams that are usable in the inductive definition of spaces with paths between paths.

In this section, we assume that P ∶ A→Type is a dependent type over A, that x,y ∶ A,
p,q ∶ x ↝ y and that s ∶ p ↝ q. First of all, note that s immediately induces a path
s[−1] ∶ p−1↝ q−1.

Lemma 3.4.1. Write P(p) and P(q) for the transportation functions from P(x) to
P(y) induced by p, resp. q. Then there is a homotopy P(s) ∶ P(p)↝ P(q). We
denote P(s)(u) ∶ p ⋅u↝ q ⋅u by s ⋅u.

If γ ∶ u↝ v is a path in P(x), then the square

p ⋅u p ⋅v

q ⋅u q ⋅v

p ⋅ γ

s ⋅u

q ⋅ γ

s ⋅ v

76

commutes by a path we denote by s ⋅ γ .

PROOF. Immediate with induction on s.

Suppose furthermore that f ∶∏(x ∶ A), P(x) is a section of P. Write f↝ for the
action on paths of A that f induces, i.e.

f↝ ∶∏(x,y ∶ A)(p ∶ x↝ y), p ⋅ f (x)↝ f (y).
Recall that this function is defined in the dependent map lemma 2.1.7. Then we get, for
each x,y ∶ A the dependent function f↝(x,y) ∶∏(p ∶ x↝ y), p ⋅ f (x)↝ f (y) which is a
section of the dependent type P↝ over x↝ y given by P↝(p) ∶= p ⋅ f (x)↝ f (y). Hence
we have

(f↝(x,y))↝ ∶∏(p,q ∶ x↝ y)(s ∶ p↝ q), s ⋅ f↝(x,y, p)↝ f↝(x,y,q).
It is useful to keep the notation f↝, but we will omit reference to x and y and we will
simply write f↝(p) instead of f↝(x,y, p).

If we suppose that g ∶∏(x ∶ A), P(x) is also a section of P, for which there is a path
α ∶ f ↝ g, then we get paths α(x) ∶ f (x)↝ g(x) for each x ∶ A. We also get the path
P(p)↝(α(x)) ∶ p ⋅ f (x)↝ p ⋅ f (y), which we denote simply by p ⋅α(x). The following
lemma says that we also get paths α(p).

Lemma 3.4.2. Suppose that α ∶ f ↝ g is a path in∏(x ∶ A), P(x) and that p ∶ x↝ y
is a path in A. Then there is a path α(p) witnessing the commutativity of the square

f (y) g(y)

p ⋅ f (x) p ⋅g(x)

α(x)

f↝(p)

(p ⋅α(x))−1

g↝(p)

PROOF. This is immediate with induction on α and p.

Lemma 3.4.3. Suppose that p,q ∶ x↝ y are paths in A and that s ∶ p↝ q. Then, for
any dependent type P over A there is a term of type

∏(u ∶ P(x))(v ∶ P(y))(γ ∶ p ⋅u↝ v), γ ●(s ⋅u)−1↝ s ⋅ γ.
As an immediate consequence, we have for any section f ∶∏(x ∶ A), P(x) of P that
there is a path f (s)′ ∶ f (p)●(s ⋅u)−1↝ f (q).

PROOF. With induction over s. The lemma is obvious when s = idp ∶ p↝ p. The path
f (s)′ is then given by the composition of f (s) with the path of this lemma at the triple(f (x), f (y), f (p)).

77

Lemma 3.4.4. Suppose that α ∶ f ↝ g is a path in the space∏(x ∶ A), P(x). Then
define the dependent space Q over∏(x ∶ A), P(a) by

Q(f) ∶=∏(x,y ∶ A)(p ∶ x↝ y), p ⋅ f (x)↝ f (y).
It follows immediately that f↝ ∶ Q(f) and that there is a path α̃ ∶ α ⋅ f↝ ↝ g↝ in
Q(g). The values of α ⋅ f↝ are also computed by

(α ⋅ f↝)(p)↝ α(y)● f↝(p)●(p ⋅α(x))−1

for x,y ∶ A and p ∶ x↝ y. If we have p,q ∶ x↝ y and s ∶ p↝ q, then the diagram

(α ⋅ f↝)(q) g↝(q)

s ⋅(α ⋅ f↝)(p) s ⋅g↝(p)

α̃(q)

(α ⋅ f↝)↝(s)

s ⋅(α̃(p))

g↝↝(s)

(5)

commutes. All the terms and paths in this diagram are in the space q ⋅g(x)↝ g(y).
We can express those terms as a composition of already known paths, using induction
on α .

PROOF. All the assertions made in this lemma are proved with path induction.

Lemma 3.4.5. Suppose that p,q ∶ x↝ y are paths in A and that s ∶ p↝ q. Suppose
furthermore that P ∶ A→Type is a dependent type over A and that there are paths

α ∶ u↝ u′ in P(x), β ∶ v↝ v′ in P(y), γ ∶ p ⋅u↝ v in P(y).
Then there is a path witnessing the commutativity of the square

v v′

q ⋅u q ⋅u′
q ⋅α

s ⋅ γ

β

s ⋅(β ● γ ●(p ⋅α)−1)

of paths in P(y). Here, the transportation s ⋅ γ is taken with respect to the dependent
type D over x↝ y given by D(p) ∶= p ⋅u↝ v and the transportation

s ⋅(β ● γ ●(p ⋅α)−1)
is taken with respect to the dependent type D′ over x↝ y given by D′(p) ∶= p ⋅u′↝ v′.

PROOF. Immediate with induction on s.

78

Lemma 3.4.6 (Untying lemma). Suppose that P is a dependent type over A and
that α ∶ f ↝ g is a path in the space ∏(x ∶ A), P(x) of sections of P the space of
paths witnessing the commutativity of the square

(α ⋅ f↝)(q) g↝(q)

s ⋅(α ⋅ f↝)(p) s ⋅g↝(p)

α̃(q)

(α ⋅ f↝)↝(s)

s ⋅(α̃(p))

g↝↝(s)

is equivalent to the space of paths witnessing the commutativity of the pentagon

α(y)● f (q)●(q ⋅α(x))−1α(y)●(s ⋅ f (p))●(q ⋅α(x))−1

g(q)s ⋅(α(y)● f (p)●(p ⋅α(x))−1) s ⋅g(p)

α(y)−● f(s)●−(q ⋅α(x))−1

α(q)

s ⋅α(p) g(s)

The unlabeled path in this diagram is the canonical path from lemma 3.4.5.

PROOF. Using induction on α , s and p, both of the spaces reduce to id f(x)↝ id f(x).

3.5 Some examples of inductive spaces with 2-cells
We are now ready to give our initial couple of examples of inductive spaces which have
paths between paths among their basic constructors. We will give two of them, the disc
and the sphere. The disc plays the role of the interval, in the sense that it is the minimal
example in which every path is nontrivial, meaning that it has two different points, two
different paths between them and a path between those paths. The sphere has, like the
circle, only one base point and it has a path from the identity path on that base point to
itself which represents the surface of the sphere.

3.5.1 The disc

Definition 3.5.1. Define the disc inductively as a type disc with basic constructors
a,b ∶ disc, p,q ∶ a↝ b and d ∶ p↝ q. The induction principle for the disc is that whenever
we have

P ∶ disc→Type α ∶ p ⋅u↝ v

u ∶ P(a) β ∶ q ⋅u↝ v

v ∶ P(b) γ ∶ s ⋅α ↝ β

then there is a section R ∶∏(x ∶ disc), P(x) for which there are paths

Ba ∶ R(a)↝ u, and Bb ∶ R(b)↝ v,

79

there are paths Lp and Lq witnessing the commutativity of the following diagrams
(respectively)

R(b) v

p ⋅R(a) p ⋅u(p ⋅Ba)−1

R(p)

Bb

α

R(b) v

q ⋅R(a) q ⋅u(q ⋅Ba)−1

R(q)

Bb

β

and a path Q witnessing the commutativity of the pentagram

βBb ●R(q)●(q ⋅Ba)−1

Bb ●(s ⋅R(p))●(q ⋅Ba)−1 s ⋅(Bb ●R(p)●(p ⋅Ba)−1) s ⋅α
Bb −●R(s)●−(q ⋅Ba)−1

Lq

(s ⋅Lp)−1

γ

(6)

Here, the unlabeled path is the canonical path from lemma 3.4.5. ⧫
We state the non-dependent induction principle for the disc without proof.

Lemma 3.5.2. For any paths α,β ∶ x ↝ y and δ ∶ α ↝ β in a type A there is a
function

f ∶ disc→ A

for which there are paths Ba ∶ f (a)↝ x and Bb ∶ f (b)↝ y, paths Lp and Lq witnessing
the commutativity of the squares

f (b) v

f (a) u
B−1
a

f(p)

Bb

α

f (b) v

q ⋅ f (a) u
B−1
a

f(q)

Bb

β

and a path Q witnessing the commutativity of the diagram

Bb ● f (q)●B−1
a β

Bb ● f (p)●B−1
a α

L−1
p

Bb −● f(s)●−B−1
a

Lq

γ

80

Theorem 3.5.3 (Correspondence theorem). For any dependent space P over the
disc, the space of sections of P is equivalent to the space

Constr(P) ∶=∑(u ∶ P(a))(v ∶ P(b))(α ∶ p ⋅u↝ v)(β ∶ q ⋅u↝ v), s ⋅α ↝ β .

of initial data for sections of P.

PROOF. Suppose that f ∶∏(w ∶ disc), P(w) is a section of a dependent space P over
the disc. Then we have

f (a) ∶ P(a) f (p) ∶ p ⋅ f (a)↝ f (b)
f (b) ∶ P(b) f (q) ∶ q ⋅ f (a)↝ f (b)

f (s) ∶ s ⋅ f (p)↝ f (q)
which form an element of Constr(P). This gives us a function ϕ from∏(w ∶ disc), P(w)
to Constr(P). The induction principle for the disc gives a section for each element
of Constr(P), so the induction principle is the map ψ from Constr(P) to ∏(w ∶
disc), P(w).

We will first verify that there is a homotopy from ψ(ϕ(f)) to f for every section f
of P; the function ψ(ϕ(f)) will be denoted by f̃ . Thus, we will have to show that

∏(w ∶ disc), f̃ (w)↝ f (w)
We will use the induction principle for the disc. Note that there are paths

u ∶= B f(a) ∶ f̃ (a)↝ f (a)
v ∶= B f(b) ∶ f̃ (b)↝ f (b).

We use a separate lemma to find paths p ⋅u↝ v and q ⋅u↝ v.

Lemma 3.5.4. Suppose that p ∶ x↝ y is a path of type A. For any dependent type
P ∶ A→ Type over A, for any two sections f ,g ∶∏(x ∶ A), P(x) of P and any two
paths α ∶ f (x)↝ g(x) and β ∶ f (y)↝ g(y), the space

p ⋅α ↝ β ,

where the transportation is taken with respect to the dependent type Q over A
given by Q(x) ∶= f (x)↝ g(x), is equivalent to the space of paths witnessing the
commutativity of the square

f (y) g(y)

p ⋅ f (x) p ⋅g(x).
f(p)

β

P(p)↝(α)−1

g(p)

81

PROOF. With induction on p the first space reduces to α ↝ β while the second space
reduces to β ●α−1↝ idg(x). Those spaces are equivalent.

We apply this equivalence on the paths Lp and Lq to get paths α ∶ p ⋅ u↝ v and
β ∶ q ⋅u↝ v respectively. The last step in the induction proof is to find a path from s ⋅α
to β . Again, we formulate a separate lemma with a more general approach.

Lemma 3.5.5. Suppose that p,q ∶ x↝ y are paths in A and that s ∶ p↝ q. Suppose
also that P ∶ A→ Type is a dependent type over A, that f ,g ∶∏(x ∶ A), P(x) are
sections of P and that there are paths

α ∶ f (x)↝ g(x) γ ∶ β ● f (p)●P(p)↝(α)−1↝ g(p)
β ∶ f (y)↝ g(y) δ ∶ β ● f (q)●P(q)↝(α)−1↝ g(q).

Then the space
s ⋅ γ ↝ δ ,

where the transportation is taken with respect to the dependent type Q over x↝ y
given by Q(p) ∶= β ● f (p)●P(p)↝(α)↝ g(p), is equivalent to the space of paths
witnessing the commutativity of the diagram

g(q)

β ● f (q)●P(q)↝(α)−1β ●(s ⋅ f (p))●P(q)↝(α)−1

s ⋅(β ● f (p)●P(p)↝(α)−1) s ⋅g(p)

β −● f(s)●−P(q)↝(α)−1

δ

s ⋅ γ g(s)

PROOF. With induction on s both spaces reduce to γ ↝ δ .

Note that, by the equivalence of lemma 3.5.4, the space s ⋅α ↝ β is equivalent to the
space s ⋅Lp↝ Lq. Thus, we get the desired path s ⋅α ↝ β by applying the above lemma
to Q. This concludes our proof with induction that f̃ and f are homotopic.

Now suppose we have a quintuple x ∶= ⟨u,v,α,β ,γ⟩ of Constr(P). The last task in
order to finish the proof of the correspondence theorem for the disc is to find a path
from ϕ(ψ(x))↝ x.

Note that the induction principle gives the paths Ba ∶ R(a)↝ u and Bb ∶ R(b)↝ v. A
path from Bb ⋅(Ba ⋅R(p))↝ α is given by the canonical path

Bb ⋅(Ba ⋅R(p))↝Bb ●R(p)●P(p)↝(Ba)−1,

followed by Lp. Similarly, we get a path from Bb ⋅(Ba ⋅R(q)) to β using Lq. For the last
step, we have to verify that

Lq ⋅(Lp ⋅(Bb ⋅(Ba ⋅R(s))))↝ γ.

82

Note that

Bb ⋅(Ba ⋅R(s))↝Bb−●R(s)●−P(q)↝(Ba)−1

Then Lq ⋅(Lp ⋅(Bb ⋅(Ba ⋅R(s)))) is propositionally equal to the composition of the solid
arrows in the diagram

β

Bb ●R(q)●P(q)↝(Ba)−1Bb ●(s ⋅R(p))●P(q)↝(Ba)−1

s ⋅(Bb ●R(p)●P(p)↝(Ba)−1) s ⋅α

Bb −●R(s)●−P(q)(Ba)−1

Lβ

s ⋅Lα γ

The commutativity of this diagram is clearly equivalent to the commutativity of diagram
6, for which we have Q. This finishes the proof that there is a path ϕ(ψ(x))↝ x,
completing also the proof of the correspondence theorem for the disc.

Corollary 3.5.6. For any type A, we have an equivalence between disc→ A and the
space ∑(x,y ∶ A)(p,q ∶ x↝ y), p↝ q.

Lemma 3.5.7. The disc is contractible.

PROOF. We wish to show with induction that there is a term of type

∏(w ∶ disc), w↝ b.

Let P be the dependent type over disc given by P(w) ∶=w↝b. We have the terms p ∶P(a)
and idb ∶ P(b). There is a canonical term α of type p ⋅p↝ idb and a canonical term of
type q ⋅p↝ p●q−1. The space p●q−1 ↝ idb is equivalent to the space p↝ q, which is
inhabited by the path s. This gives a path β ∶ q ⋅p↝ idb. Note that s ⋅α ↝ α ●(s ⋅p)−1.
The square

q ⋅p p ⋅p

p●q−1 idb

(s ⋅p)−1

invRight(q)●(s●−q−1)

commutes generally (by induction on a general path s ∶ p↝ q).

83

3.5.2 The sphere

Definition 3.5.8. We define the type sphere inductively with basic constructors b ∶
sphere and s ∶ idb↝ idb. The induction principle for the sphere is that whenever we have

P ∶ sphere→Type

u ∶ P(b)
α ∶ s ⋅ idu↝ idu,

where the transportation in s ⋅ idu is taken with respect to the dependent type λ p.p ⋅u↝ u,
then there is a section R(P,u,α) ∶∏(x ∶ sphere), P(x) of P for which there is a path
B ∶=B(P,u,α) ∶ R(P,u,α,b)↝ u and a path Q(P,u,α) witnessing the commutativity of
the diagram

iduB● idR(P,u,α,b) ●B−1

B●(s ⋅ idR(P,u,α,b))●B−1 s ⋅(B● idR(P,u,α,b) ●B−1) s ⋅ idu

B−●R(P,u,α,s)●−B−1 α

⧫
Theorem 3.5.9 (Correspondence theorem for sphere). Suppose P is a dependent
type over sphere. Then there is an equivalence between the space of sections of P
and the space

Constr(P) ∶=∑(x ∶ P(base), s ⋅ idx↝ idx

of prerequisites for application of the induction principle for the sphere are equiva-
lent.

PROOF. The function ψ ∶ Constr(P)→∏(t ∶ sphere), P(t) is given by the induction
principle. The function ϕ ∶ (∏(t ∶ sphere, P(t))→ Constr(P) is given by

λ f .⟨ f (base), f (s)⟩.
We have to show that there are homotopies ψ ○ϕ ∼ idmap and ϕ ○ψ ∼ idmap.

Suppose f ∶∏(t ∶ sphere), P(t) and denote ψ(ϕ(f)) by f̃ . We will find a homotopy
from f̃ to f using the induction principle of the sphere. Note that the induction principle
gives us a path B ∶ f̃ (base)↝ f (base) and a path Q witnessing the commutativity of the
diagram

id f(b)B● id f̃(b) ●B−1

B●(s ⋅ id f̃(b))●B−1 s ⋅(B● id f̃(b) ●B−1) s ⋅ id f(b)
B−● f̃(s)●−B−1 f(s)

84

By lemma 3.5.5, we can get a path s ⋅ idB ↝ idB from Q. Hence the functions f̃ and f
are indeed homotopic and therefore identical.

For the other homotopy, ϕ ○ψ ∼ idmap, we have a separate lemma:

Lemma 3.5.10. Suppose A is a type, x ∶ A and s ∶ idx↝ idx and that P is a dependent
type over A. Define the dependent type Q over P(x) by

Q(t) ∶= s ⋅ idt ↝ idt .

Suppose furthermore that p ∶ u↝ v is a path in P(x) and that α ∶ Q(u) and that
β ∶Q(v). Then the space p ⋅α ↝ β is equivalent to the space of paths witnessing the
commutativity of the diagram

idvp● idu ● p−1

p●(s ⋅ idu)● p−1 s ⋅(p● idu ● p−1) s ⋅ idv

p−●α ●− p−1 β

PROOF. The proof is immediate by induction on p.

This lemma has the immediate consequence that ϕ(ψ(⟨u,α⟩))↝ ⟨u,α⟩ for each⟨u,α⟩ in Constr(P).

Corollary 3.5.11. For any type A, the spaces sphere→ A and

∑(x ∶ A), idx↝ idx

are equivalent.

Lemma 3.5.12. The sphere is determined uniquely up to equivalence.

PROOF. Suppose that S is a type with b ∶ S and s ∶ idb↝ idb satisfying the same induction
principle as the sphere. Then there is a variant of corollary 3.5.11 valid for S. Thus
we obtain a function ϕ ∶ S→ sphere corresponding to the pair ⟨b,s⟩ for which there are
paths

α ∶ ϕ(b)↝ b and β ∶ α ⋅ϕ(s)↝ s

and a function ψ ∶ sphere→ S corresponding to the pair ⟨b,s⟩ for which there are paths

γ ∶ψ(b)↝ b and δ ∶ γ ⋅ψ(s)↝ s.

To see that ψ ○ϕ ∼ idmapS, it suffices to show that ψ ○ϕ is in the same homotopy fiber
of the equivalence (∑(x ∶ S), idx↝ idx) ≃ S→ S as the identity map idmapS. Therefore,
it suffices to check that there are paths µ ∶ ψ(ϕ(b))↝ b and ν ∶ µ ⋅ψ(ϕ(s))↝ s. For
the path µ we take γ ●ψ(α). For the path ν notice that there are paths

(γ ●ψ(α)) ⋅ψ(ϕ(s))↝ γ ⋅(ψ(α) ⋅ψ(ϕ(s)))↝ γ ⋅ψ(α ⋅ϕ(s)))↝ γ ⋅ψ(s)↝ s.

The proof that there is a homotopy ϕ ○ψ ∼ idmapsphere is similar.

85

3.6 Directed colimits
We take the practical approach and define only the directed limit that we need. However,
it can already be used for several interesting constructions.

Definition 3.6.1. Suppose we have a dependent type A ∶N→Type and suppose that we
have a dependent function

α ∶∏(n ∶N), An→ An+1.

Then we can define the space Aω ∶= [A,α]ω inductively as the space with basic con-
structors

β ∶∏(n ∶N), An→ Aω

γ ∶∏(n ∶N)(x ∶ An), βn+1(αn(x))↝ βn(x).
The induction principle for Aω is that for each dependent type Λ over Aω for which
there are

B ∶∏(n ∶N)(x ∶ An), Λ(βn(x))
Γ ∶∏(n ∶N)(x ∶ An), γn(x) ⋅Bn+1(αn(x))↝ Bn(x)

there is a section s ∶∏(w ∶ Aω), Λ(w) with the property that there are paths µn(x) ∶
s(βn(x))↝ Bn(x) and paths νn(x) witnessing the commutativity of the diagram

s(βn(x)) Bn(x)

γn(x) ⋅ s(βn+1(αn(x))) γn(x) ⋅Bn+1(αn(x))(γn(x) ⋅µn+1(αn(x)))−1

s(γn(x))

µn(x)

Γn(x)

for every n ∶N and every x ∶ An. ⧫
The following lemma is just a sanity check, to see if the universal property as stated

works out nicely in a simple case:

Lemma 3.6.2. The directed colimit of the sequence

A A A ⋯idA idA idA

is equivalent to A.

PROOF. We use the induction principle to find a function from Aω to A. For each
n ∶N take Bn to be the identity map idmapA. Then we have Bn+1(x) = x for each x ∶ A
and hence we get a function r ∶ Aω → A with the property that there is a homotopy

86

µn ∶ r●βn ∼ idmapA for each n ∶N. We wish to show that β0 is the inverse of r. Note that
it is only left to show that there is a section of the dependent type Λ over Aω given by

Λ(w) ∶= β0(r(w))↝w,

which we do with the induction principle for Aω . Thus, we have to give maps

B ∶∏(n ∶N)(x ∶ An), β0(r(βn(x)))↝ βn(x)
Γ ∶∏(n ∶N)(x ∶ An), γn(x) ⋅Bn+1(x)↝ Bn(x)

We define B by induction: B0(x) ∶= β0(µ0(x)) and Bn+1(x) ∶=Bn(x)●γn(x). Since there
is a canonical path γn(x) ⋅Bn+1(x)↝ Bn+1(x)● γn(x)−1, we immediately get Γ.

Another case where it is easy to compute the directed colimit is where each of the
functions αn is constant. We will use this case to show that the ω-sphere is contractible.

Lemma 3.6.3. Suppose that A ∶ N → Type is a dependent type over N and that
a ∶∏(n ∶N), An is a section of A. Define α ∶∏(n ∶N), An→ An+1 to be λn.λx.an+1.
Then the type Aω is contractible.

PROOF. We will show, using the induction principle for Aω , that there is a term of type

∏(x ∶ Aω), x↝ β1(a1).
Thus, we have to find terms

B ∶∏(n ∶N)(x ∶ An), βn(x)↝ β1(a1)
Γ ∶∏(n ∶N)(x ∶ An), γn(x) ⋅Bn+1(an+1)↝ Bn(x)

We will first find B using induction on the natural numbers. Suppose that x ∶ A0. A path
from β0(x) to β1(a1) is given by γ0(x)−1. Suppose that there is a term B(n) of type∏(x ∶ An), βn(x)↝ β1(a1) and that x ∶ An+1. A path from βn+1(x) to β1(a1) is given by

Bn(an)● γn(an)● γn+1(an+1)● γn+1(x)−1

This gives us B. The term Γ is immediately obtained upon observing that there is a path
γn(x) ⋅Bn+1(an+1)↝ Bn+1(an+1)● γn(x)−1 for each x ∶ An.

Theorem 3.6.4 (Invariance under homotopy). Suppose that A is a dependent type
over N and that α,α ′ ∶∏(n ∶N), An→An+1 are homotopic functions. Then [A,α]ω ≃[A,α ′]ω .

PROOF. Write β and γ for the basic constructors of [A,α]ω and write β ′ and γ ′ for
the basic constructors of [A,α ′]ω . Also, let H ∶∏(n ∶N)(x ∶ An), αn(x)↝ α ′

n(x) be a
homotopy from α to α ′.

A function ϕ ∶ [A,α]ω → [A,α ′]ω is obtained by the induction principle for [A,α]ω .
For each n ∶ N, we take the function from Bn ∶= β ′

n ∶ An → [A,α ′] and for each x ∶ An
take the path Γn(x) ∶= γ ′n(x)●β ′

n+1(H(x)). This gives us the function ϕ for which there

87

are paths µn(x) ∶ ϕ(βn(x))↝ β ′
n(x)) and paths witnessing the commutativity of the

diagram

ϕ(βn(x)) β ′
n(x)

ϕ(βn+1(αn(x)) β ′
n+1(αn(x))

µn+1(αn(x))−1

ϕ(γn(x))

µn(x)

γ ′n(x)●β ′n+1(Hn(x))

for each n ∶N and each x ∶ An. A function ψ in the other direction with paths µ ′n(x) ∶
ψ(β ′

n(x))↝ βn(x) and paths witnessing the commutativity of the diagram

ψ(β ′
n(x)) βn(x)

ψ(β ′
n+1(α ′

n(x)) βn+1(α ′
n(x))

µ ′n+1(α ′n(x))−1

ψ(γ ′n(x))

µ ′n(x)

γn(x)●βn+1(Hn(x)−1)

for each n ∶N and each x ∶ An, is obtained in a similar way. A homotopy ψ ○ϕ ∼ idmap
can be found using the induction principle of [A,α]ω .

We finish this thesis with the construction of the ω-sphere and the proof that it is
a contractible space. The ω-sphere is the colimit of a sequence of finite dimensional
spheres, using a definition from Peter LeFanu Lumsdaine. A formal proof that the
ω-sphere is contractible was first given by Guillaume Brunerie. Our approach here is a
little different: where Brunerie has shown that the ω-sphere is equivalent to an ω-ball,
which is a directed colimit of contractible spaces and hence contractible, we show that
the inclusions of each sphere into the next are homotopic to a constant map.

Definition 3.6.5. Define the 0-sphere Sphere(0) as the inductive type with basic con-
structors

north(0),south(0) ∶ Sphere(0).
Thus, the 0-sphere is equivalent to the the type bool of booleans. If the n-sphere
Sphere(n) has been defined, define the n+1−Sphere as the inductive type with basic
constructors

north(n+1) ∶ Sphere(n+1)
south(n+1) ∶ Sphere(n+1)
longitude(n) ∶∏(x ∶ Sphere(n)), north(n+1)↝ south(n+1).

The induction principle for Sphere(n+ 1) is that for every dependent type Λ over

88

Sphere(n+1) for which there are

N ∶Λ(north(n+1))
S ∶Λ(south(n+1))
L ∶∏(x ∶ Sphere(n)), longitude(n,x) ⋅N(n+1)↝ S(n+1)

there is a section f ∶∏(x ∶ Sphere(n+1)), Λ(x) of Λ with the property that there are
paths

α ∶ f (north(n+1))↝N and β ∶ f (south(n+1))↝ S

and paths witnessing the commutativity of the square

f (south(n+1)) S

longitude(n,x) ⋅ f (north(n+1)) longitude(n,x) ⋅N(longitude(n,x) ⋅α)−1

f(longitude(n,x))

β

L(x)

for each x ∶ Sphere(n+1). Note that we may consider Sphere as a dependent type over
N with sections north,south ∶∏(n ∶N), Sphere(n) and a function

longitude ∶∏(n ∶N)(x ∶ Sphere(n)), north(n+1)↝ south(n+1). ⧫
Before we can define Sω we have to find maps Kn ∶ Sphere(n)→ Sphere(n+1) for

each n ∶N.

Lemma 3.6.6. There is a function K of type

∏(n ∶N), Sphere(n)→ Sphere(n+1)
for which there are paths

ξn ∶K(n,north(n))↝ north(n+1) and ζn ∶K(n,south(n))↝ south(n+1)
for each n ∶N and a path witnessing the commutativity of the square

K(n+1,south(n+1)) south(n+2)

K(n+1,north(n+1)) north(n+2)
ξ−1

n+1

K(n+1, longitude(n,x))

ζn+1

longitude(n+1,K(n,x))

commutes for each n ∶N and x ∶ Sphere(n).

89

PROOF. To find K(n) for each n ∶ N, we will first use induction on n. The function
K(0) ∶ Sphere(0)→ Sphere(1) is given by

K(0,north(0)) ∶= north(1) and K(0,south(0)) ∶= south(1).
If the function K(n) is given, we may construct K(n+1) using the induction principle
of Sphere(n+1). Thus, we take

N ∶= λn.λx.north(n+1) ∶∏(n ∶N), Sphere(n)→ Sphere(n+1)
S ∶= λn.λx.south(n+1) ∶∏(n ∶N), Sphere(n)→ Sphere(n+1).

It is left to find a function

L ∶∏(n ∶N)(x ∶ Sphere(n)), longitude(n,x) ⋅N(n+1)↝ S(n+1).
Note that there is a canonical path longitude(n,x) ⋅N(n+1)↝ N(n+1) for each n ∶N
and each x ∶ Sphere(n). By function extensionality, it therefore suffices to find a path
north(n+2)↝ south(n+2) for each n ∶N and each x ∶ Sphere(n). We get such paths
with the function

λx.longitude(n+1,K(n,x)).
Definition 3.6.7. The ω-sphere Sω is defined as the directed colimit of the n-spheres
using the functions K(n) of the previous lemma. ⧫

Lemma 3.6.8. For any n ∶N, the function K(n) is homotopic to the constant function

λx.south(n+1).
PROOF. The function K(0) is homotopic to λx.south(1) because there are the paths

ζ0 ∶K(0,south(0))↝ south(1)
longitude(0,south(0))●ξ0 ∶K(0,north(0))↝ south(1).

Suppose that K(n) ∼ λx.south(n+1). We use the induction principle of Sphere(n+1)
to show that there is a homotopy from K(n+1) to λx.south(n+2). For the north and
south poles take the paths

S ∶= ζn+1 ∶K(n+1,south(n+1))↝ south(n+2)
N ∶= longitude(n+1,south(n+1))●ξn+1 ∶K(n+1,north(n+1))↝ south(n+2).

It is left to find paths L(x) ∶ longitude(n,x) ⋅N ↝ S for each x ∶ Sphere(n). Note that
there is a canonical path

longitude(n,x) ⋅N ↝N ●K(n+1, longitude(n,x))−1.

90

Now the proof is finished by noting that the square on the left in the diagram

K(n+1,north(n+1)) north(n+2)

K(n+1,south(n+1)) south(n+2)
K(n+1, longitude(n,x)−1

ζn+1

ξn+1

longitude(n+1,K(n,x)) longitude(n+1,south(n+1))

commute for each x ∶ Sphere(n) and that the parallel paths on the right are identical by
the induction hypothesis.

Theorem 3.6.9 (Brunerie). The ω-sphere is contractible.

PROOF. This is an immediate consequence of lemmas 3.6.3 and 3.6.8.

91

A. THE DEPENDENT PRODUCT AS AN INDUCTIVE SPACE

Or goal in this appendix is to motivate the η-rule for dependent products
from the point of view of a product space as an inductive space. Our
definition of the dependent product, as we have given it in the short guide
to type theory, section 1, was not as an inductive space. However, it
was not too far from it either: instead of giving a universal property (the
induction principle) for dependen products, we have stated the η-rule. In
the following, we will observe that if we have gone the inductive way, a
weaker version of the η-rule would be automatically implied. The word
‘weaker’ here, means that the equality of the η-rule is replaced by a path.

A note on the notation: since we cannot make use of product types while
introducing them, it will be useful to use the notation of inferences.

Recall that dependent products are introduced by the rule

⊢ A ∶Type
x ∶ A ⊢ P(x) ∶Type

⊢ ∏(x ∶ A), P(x) ∶Type

and the product∏(x ∶ A), P(x) has the following canonical elements:

⊢ A ∶Type
x ∶ A ⊢ P(x) ∶Type
x ∶ A ⊢ f (x) ∶ P(x)

⊢ λx. f (x) ∶∏(x ∶ A), P(x)
Instead of the usual elimination rule, which introduces a term evaluate(f ,a) ∶ P(a) for
every f ∶∏(x ∶ A), P(x) and a ∶ A and then asserts that there are definitional equalities

evaluate(λx. f (x),a) = f (a) (β)
λx.evaluate(f ,x) = f , (η)

let’s approach dependent products as inductive spaces. That is, we require that the
following elimination rule holds for∏(x ∶ A), P(x):

f ∶∏(x ∶ A), P(x) ⊢ D(f) ∶Type
x ∶ A, u(x) ∶ P(x) ⊢ d(x.u(x)) ∶D(λx.u(x))⊢ f ∶∏(x ∶ A), P(x)

⊢ R(D,d, f) ∶D(f)

92

with the conversion rule

f ∶∏(x ∶ A), P(x) ⊢ D(f) ∶Type
x ∶ A, u(x) ∶ P(x) ⊢ d(x.u(x)) ∶D(λx.u(x))

x ∶ A ⊢ u(x) ∶ P(x)
⊢ R(D,d,λx.u(x)) = d(x.u(x)) ∶D(λx.u(x))

We take this approach, because evaluate looks like an eliminator, but it lacks the strength
of the typical eliminators that we see for inductive spaces. Typically, eliminators are
formulated with respect to arbitrary dependent types, which is clearly not the case with
evaluate. So the first thing we should do is finding out whether this inductive definition
for dependent products give rise to a notion of evaluation.

To see this, suppose that a ∶A and let D(f) be the type P(a) for any f ∶∏(x ∶A), P(x).
For any inference x ∶A⊢ u(x) ∶P(x) we have the term d(x.u(x)) ∶= u(a) of type P(a), so
the induction principle for dependent products gives a term R(D,d, f) of P(a) for any
f ∶∏(x ∶ A), P(x), which is precisely the term we were after. Moreover, the conversion
rule states that R(D,d,λx.u(x)) = u(a), so we get the β -rule from the conversion rule.
We will denote this R(D,d, f) by evaluate(f ,a).

If we also have identity types, we can furthermore derive the η-rule. Indeed, if
f ∶∏(x ∶ A), P(x) is a section of P then we can form the section

f̃ ∶= λx.evaluate(f ,x).
Consider the dependent type D over ∏(x ∶ A), P(x) given by D(f) ∶= f̃ ↝ f . Then
D(λx.u(x)) is inhabited by the identity path on λx.u(x) since evaluate(λx.u(x),a) =
u(a). Therefore, the induction principle for dependent products gives a path from f̃
to f for each f ∶∏(x ∶ A), P(x). This means that instead of the definitional η-rule, we
have the weak-η-rule

λx.evaluate(f ,x)↝ f . (weak-η)

Remark A.1. Mike Shulman has pointed out that the metatheory which we have used
in this section is stronger than Coq’s metatheory. In other words, it would not be possible
to perform this construction of dependent products as an inductive space within Coq.★

93

B. THE CIRCLE IN THE CATEGORY OF GROUPOIDS

Recall that a groupoid is a category in which every morphism is an isomorphism. The
category of groupoids has small groupoids as objects and the functors between them
as morphisms. We let W, F and C be the classes of equivalences, isofibrations and
functors that are injective on objects between groupoids; it is well known that this gives
the structure of a model category on the category of groupoids. Recall that a functor
F ∶ A→ B is an isofibration if for each a ∈ A and each isomorphism g ∶ f (a)→ b′ in B
there exists an isomorphism f ∶ a→ a′ such that F(f) = g. Our aim in this section is to
show that the groupoid Z satisfies the inductive properties of the circle. Our intuition
behind this is that Z consists of one object ∗, which we interpret to be the base point of
the circle, and the morphisms are the integers k ∶ ∗→ ∗. So we may interpret loop by
the integer 1.

Remark B.1. For any groupoid G, the groupoid G→ is the path groupoid of G. The
functor i defined by x↦ idx on objects and g↦ (g,g) on morphisms is indeed injective
on objects. It is also an equivalence, for i○dom ≃ idG→ via the natural transformation
τg = (iddomg,g) and dom○i = idG.

The functor (dom,cod) ∶ G→ → G×G is an isofibration. Suppose that g ∶ x→ y is
an object in G→ and let (h,k) ∶ (x,y)→ (x′,y′), then (h,k) is a morphism in G→ from
g to k○g○h−1 and we have clearly that (dom,cod)(h,k) = (h,k). This shows that p is
indeed an isofibration. Note that p○ i = ∆, so that we may rightfully conclude that G→ is
a path groupoid for G. ★

Lemma B.2. If f ∶ E → B is an isofibration, then every choice of an isomorphism
Γ(h,u) ∶ u→ u′ with f (Γ(h,u)) = h, for u ∈ E and h ∶ f (u)→ b′, extends to a functor

Γ ∶ B→×dom, f E → E→
with the property that f→ ○Γ = proj1. Thus, the transport functor can be defined as
cod○Γ. We denote the transportation of u along k by k ⋅u.

PROOF. Suppose that Γ(h,u) is an isomorphism of E with domain u and with the
property that f (Γ(h,u)) = h. We can extend the map (h,u)↦ Γ(h,u) to a functor by
defining

Γ(k,s) = (s,Γ(h′,u′)○ s○Γ(h,u)−1)
for a morphism k ∶ h⇒ h′ in G→ and a morphism s ∶ u→ u′ in E.

Corollary B.3. If g ∶B→E is a section of f there exists a functor Map(g) ∶B→→E→
such that Map(g)(h) ∶ h ⋅g(x)→ g(y) is above y whenever h ∶ x→ y is a morphism
of B.

94

PROOF. Define Map(g) on objects by Map(g)(h) = g(h)○Γ(h,g(b))−1 and on objects
by

Map(g)(k) = (Γ(h′,g(x′))○g(k0)○Γ(h,g(b))−1,cod(g→(k))).
This is illustrated by the diagram

h ⋅g(x) h′ ⋅g(x′)

g(x) g(x′)

g(y) g(y′)

Γ(h′,g(x′))○g(k0)○Γ(h,g(b))−1

Γ(h,g(b))−1

g(k0)
Γ(h′,g(x′))−1

g(h)

g(k1)

g(h′)

Note that f (Map(g)(h)) = f (g(h) ○Γ(h,g(b))−1) = f (g(h)) ○ f (Γ(h,g(b)))−1 = h ○
h−1 = idy, so that Map(g)(h) is indeed above y.

One more ingredient is needed to show that the groupoid Z has the inductive
properties of the circle: the groupoid of paths p ∶ 1 ⋅u→ u above 0. The fiber E∗ of ∗
consists of all the objects of E and of those morphisms s of E with f (s) = 0. Let QE
be the subgroupoid of E→∗ consisting of all the isomorphisms above ∗ with domain 1 ⋅u
and codomain u, for some u ∈ E∗. So QE is defined by the pullback diagram

QE E→∗

E∗ E∗×E∗
(dom,cod)

u↦ (1 ⋅u,u)

Note that QE consists of pairs (u, p) with p ∶ 1 ⋅u→ u in E∗ as objects. The morphisms
s ∶ (u, p)→ (v,q) of QE are morphisms s ∶ u→ v of E∗ such that q○1 ⋅ s = s○ p.

Lemma B.4. There exists a functor R ∶QE ×Z→ E with the property that f ○R =
proj2, and such that the identities R(u, p,∗) = u and Map(R(u, p))(1) = p hold for
all (u, p) ∈QE.

PROOF. Define R on objects by (u, p,∗)↦ u and on morphisms by (s,k)↦ s ○ (p ○
Γ(1,u))k. The identity q○1 ⋅ s = s○ p is used to verify that R is indeed a functor. Then
f ○R(s,k) = f (s)+k f ((p)○ f (Γ(1,u))) = 0+k(0+1) = k, and hence that f ○R = proj2.

95

For the last assertion, note that

Map(R(u, p))(1) =R(u, p,1)○Γ(1,u)−1

=R(idu,1)○Γ(1,u)−1

= p○Γ(1,u)○Γ(1,u)−1

= p.

The integers have the following completely obvious non-dependent version of R: If
G is a groupoid and p ∶ x→ x is a morphism of G, then there is a functor R′ ∶Z→G with
R′(1) = p.

96

REFERENCES

[1] Steve Awodey and Michael A. Warren. Homotopy theoretic models of identity
types. Math. Proc. Cambridge Philos. Soc., 146(1):45–55, 2009.

[2] Andrej Bauer and Peter LeFanu Lumsdaine. Mini-Workshop: The Homotopy
Interpretation of Constructive Type Theory. Oberwolfach Rep., 8(1):609–638,
2011. Abstracts from the mini-workshop held February 27–March 5, 2011, Orga-
nized by Steve Awodey, Richard Garner, Per Martin-Löf and Vladimir Voevodsky,
Oberwolfach Reports. Vol. 8, no. 1.

[3] Benno van den Berg and Richard Garner. Types are weak ω-groupoids. Proc.
Lond. Math. Soc. (3), 102(2):370–394, 2011.

[4] Benno van den Berg and Richard Garner. Topological and simplicial models of
identity types. ACM Transactions on Computational Logic (TOCL), 13(1), 2012.

[5] Benjamin C. Pierce et al. Software foundations. http://www.cis.upenn.
edu/˜bcpierce/sf/. Course notes.

[6] Martin Hofmann. On the interpretation of type theory in locally Cartesian closed
categories. In Computer science logic (Kazimierz, 1994), volume 933 of Lecture
Notes in Comput. Sci., pages 427–441. Springer, Berlin, 1995.

[7] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory.
In Twenty-five years of constructive type theory (Venice, 1995), volume 36 of
Oxford Logic Guides, pages 83–111. Oxford Univ. Press, New York, 1998.

[8] Per Martin-Löf. 100 years of Zermelo’s axiom of choice: what was the problem
with it? In Logicism, intuitionism, and formalism, volume 341 of Synth. Libr.,
pages 209–219. Springer, Dordrecht, 2009.

[9] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-
Löf’s type theory, volume 7 of International Series of Monographs on Computer
Science. The Clarendon Press Oxford University Press, New York, 1990. An
introduction.

[10] Michael Shulman et al. https://github.com/HoTT/HoTT. The HoTT
Coq repositories.

[11] Michael A. Warren. Homotopy Theoretic Aspects of Constructive Type Theory.
PhD thesis, Carnegie Mellon University, 2008.

97

http://www.cis.upenn.edu/~bcpierce/sf/
http://www.cis.upenn.edu/~bcpierce/sf/
https://github.com/HoTT/HoTT

	Introduction
	A short guide to constructive type theory
	A dependent type over a type
	Dependent products
	Dependent sums

	Defining types inductively

	Type theory with identity types
	The inductive definition of identity types
	More properties of paths
	Preservation of composition
	Preservation of inversion
	The dependent type Y(a)
	Higher paths
	Paths and dependent sums

	Homotopy type theory
	Homotopies
	Contractible spaces
	Homotopy fibers

	Equivalences
	Definition and first applications of equivalences
	Homotopy isomorphisms are equivalences
	Equivalences of total spaces and fiberwise equivalences

	The axiom of choice and function extensionality
	A weak version of the axiom of choice
	The strong function extensionality principle from the weak

	Basic examples of equivalences
	The univalence axiom
	A type theoretical Yoneda lemma
	Adjunctions of dependent types
	Definition and basic properties of adjunctions
	Existential and universal quantification of dependent types
	Exponentiation of dependent types

	Higher inductive types
	The idea of higher inductive types
	Examples of some inductive types with paths
	The interval
	The circle
	An alternative circle

	The fundamental groupoid of the circle
	The type of integers
	The universal covering of the circle

	Basic properties of paths between paths
	Some examples of inductive spaces with 2-cells
	The disc
	The sphere

	Directed colimits

	The dependent product as an inductive space
	The circle in the category of Groupoids
	References

